On a new class of integrals involving generalized hypergeometric functions
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 2, pp. 266-271.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the theory of hypergeometric and generalized hypergeometric series, classical summation theorems such as those of Gauss, Gauss second, Bailey and Kummer for the series ${}_2F_1$; Watson, Dixon, Whipple and Saalshüz play a key role. Applications of the above mentioned summation theorems are well known. In our present investigation, we aim to evaluate twenty five new class of integrals involving generalized hypergeometric function in the form of a single integral of the form: $$\int_0^1 x^{c-1}(1-x)^{c-1}{}_3F_2\left[\begin{array}{c}a, ~b, ~c+\frac{1}{2} \\ \frac{1}{2}(a+b+i+1),~ 2c+j \end{array}; 4x(1-x)\right] dx$$ for $i,j = 0, \pm 1, \pm 2.$ \indent The results are established with the help of the generalizations of the classical Watson's summation theorem obtained earlier by Lavoie et al.[lavoie1992]. Fifty interesting integrals in the form of two integrals (twenty five each) have also been given as special cases of our main findings.
Keywords: generalized hypergeometric function, Watsons theorem, definite integral, beta integral.
@article{JSFU_2024_17_2_a12,
     author = {Adem Kilicman and Shantha Kumari Kurumujji and Arjun K. Rathie},
     title = {On a new class of integrals involving generalized hypergeometric functions},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {266--271},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_2_a12/}
}
TY  - JOUR
AU  - Adem Kilicman
AU  - Shantha Kumari Kurumujji
AU  - Arjun K. Rathie
TI  - On a new class of integrals involving generalized hypergeometric functions
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2024
SP  - 266
EP  - 271
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2024_17_2_a12/
LA  - en
ID  - JSFU_2024_17_2_a12
ER  - 
%0 Journal Article
%A Adem Kilicman
%A Shantha Kumari Kurumujji
%A Arjun K. Rathie
%T On a new class of integrals involving generalized hypergeometric functions
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2024
%P 266-271
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2024_17_2_a12/
%G en
%F JSFU_2024_17_2_a12
Adem Kilicman; Shantha Kumari Kurumujji; Arjun K. Rathie. On a new class of integrals involving generalized hypergeometric functions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 2, pp. 266-271. http://geodesic.mathdoc.fr/item/JSFU_2024_17_2_a12/

[1] W.N.Bailey, Generalized Hypergeometric Series, Cambridge Tracts in Mathematics and Mathematical Physics, 32, Stechert-Hafner, New York, NY, USA, 1964 | MR

[2] J.L.Lavoie, F.Grondin, A.K.Rathie, “Generalizations of Watson's theorem on the sum of a $_3 F_2$”, Indian J. Math., 34:2 (1992), 23–32 | MR | Zbl

[3] J.L.Lavoie, F.Grondin, A.K.Rathie, K.Arora, “Generalizations of Dixon's theorem on the sum of a $_3 F_2$”, Math. Comput., 62 (1994), 267–276 | MR | Zbl

[4] J.L.Lavoie, F.Grondin, A.K.Rathie, “Generalizations of Whipple's theorem on the sum of a $_3 F_2$”, J. Comput. Appl. Math., 72 (1996), 293–300 | DOI | MR | Zbl

[5] E.D.Rainville, Special Functions, Macmillan Company, New York, 1960 ; Chelsea Publishing Company, Bronx, New York, 1971 | MR | Zbl | Zbl