Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2024_17_2_a12, author = {Adem Kilicman and Shantha Kumari Kurumujji and Arjun K. Rathie}, title = {On a new class of integrals involving generalized hypergeometric functions}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {266--271}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_2_a12/} }
TY - JOUR AU - Adem Kilicman AU - Shantha Kumari Kurumujji AU - Arjun K. Rathie TI - On a new class of integrals involving generalized hypergeometric functions JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2024 SP - 266 EP - 271 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2024_17_2_a12/ LA - en ID - JSFU_2024_17_2_a12 ER -
%0 Journal Article %A Adem Kilicman %A Shantha Kumari Kurumujji %A Arjun K. Rathie %T On a new class of integrals involving generalized hypergeometric functions %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2024 %P 266-271 %V 17 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2024_17_2_a12/ %G en %F JSFU_2024_17_2_a12
Adem Kilicman; Shantha Kumari Kurumujji; Arjun K. Rathie. On a new class of integrals involving generalized hypergeometric functions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 2, pp. 266-271. http://geodesic.mathdoc.fr/item/JSFU_2024_17_2_a12/
[1] W.N.Bailey, Generalized Hypergeometric Series, Cambridge Tracts in Mathematics and Mathematical Physics, 32, Stechert-Hafner, New York, NY, USA, 1964 | MR
[2] J.L.Lavoie, F.Grondin, A.K.Rathie, “Generalizations of Watson's theorem on the sum of a $_3 F_2$”, Indian J. Math., 34:2 (1992), 23–32 | MR | Zbl
[3] J.L.Lavoie, F.Grondin, A.K.Rathie, K.Arora, “Generalizations of Dixon's theorem on the sum of a $_3 F_2$”, Math. Comput., 62 (1994), 267–276 | MR | Zbl
[4] J.L.Lavoie, F.Grondin, A.K.Rathie, “Generalizations of Whipple's theorem on the sum of a $_3 F_2$”, J. Comput. Appl. Math., 72 (1996), 293–300 | DOI | MR | Zbl
[5] E.D.Rainville, Special Functions, Macmillan Company, New York, 1960 ; Chelsea Publishing Company, Bronx, New York, 1971 | MR | Zbl | Zbl