Analysis of the electric current distribution in a three-layer conductive structure
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 2, pp. 246-256.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents an analytical model allowing to investigate the electric current distribution in a three-layer conductive structure. The proposed model takes into account the characteristics of the three conductive layers and the transient resistances between them. Expressions for the current distribution and electric potential variation along the structure, as well as its total resistance are obtained. In addition, quantitative estimates showing the features of the electric current redistribution between the layers with alteration of the layers parameters are presented.
Keywords: three-layer conductive structure, current distribution, resistance, specific contact resistivity, transmission line method.
@article{JSFU_2024_17_2_a10,
     author = {Alexey A. Levitskiy and Pavel S. Marinushkin and Valentina A. Bakhtina},
     title = {Analysis of the electric current distribution in a three-layer conductive structure},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {246--256},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_2_a10/}
}
TY  - JOUR
AU  - Alexey A. Levitskiy
AU  - Pavel S. Marinushkin
AU  - Valentina A. Bakhtina
TI  - Analysis of the electric current distribution in a three-layer conductive structure
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2024
SP  - 246
EP  - 256
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2024_17_2_a10/
LA  - en
ID  - JSFU_2024_17_2_a10
ER  - 
%0 Journal Article
%A Alexey A. Levitskiy
%A Pavel S. Marinushkin
%A Valentina A. Bakhtina
%T Analysis of the electric current distribution in a three-layer conductive structure
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2024
%P 246-256
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2024_17_2_a10/
%G en
%F JSFU_2024_17_2_a10
Alexey A. Levitskiy; Pavel S. Marinushkin; Valentina A. Bakhtina. Analysis of the electric current distribution in a three-layer conductive structure. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 2, pp. 246-256. http://geodesic.mathdoc.fr/item/JSFU_2024_17_2_a10/

[1] H.Murrmann, D.Widmann, “Current Crowding on Metal Contacts to Planar Devices”, IEEE Transactions on Electron Devices, 16:12 (1969), 1022–1024 | DOI

[2] H.H.Berger, “Models for Contacts to Planar Devices”, Solid-State Electronics, 15 (1972), 145–158 | DOI

[3] D.B.Scott, W.R.Hunter, H.Shichijo, “A Transmission Line Model for Silicided Diffusions: Impact on the Performance of VLSI Circuits”, IEEE Transactions on Electron Devices, ED-29:4 (1982), 651–661 | DOI

[4] G.Reeves, B.Harrison, “Determination of Contact Parameters of Interconnecting Layers in VLSI Circuits”, IEEE Transactions on Electron Devices, ED-33:3 (1986), 328–334 | DOI

[5] G.K.Reeves, P.W.Leech, H.B.Harrison, “A new Electrical Model for Calculation the Sheet Resistance Parameter in Alloyed Ohmic Contacts”, MRS Mat. Res. Symp. Proc., 337 (1994), 275–280 | DOI

[6] G.K.Reeves, P W.Leech, H.B.Harrison, “Understanding the Sheet Resistance Parameter of Alloyed Ohmic Contacts Using a Transmission Line Model”, Solid-State Electronics, 38:4 (1995), 745–751 | DOI

[7] G.K.Reeves, H.B.Harrison, “An Analytical Model for Alloyed Ohmic Contacts Using a Trilayer Transmission Line Mode”, IEEE Transactions on Electron Devices, 42:8 (1995), 1536–1547 | DOI

[8] G.K.Reeves, H.B.Harrison, P.W.Leech, “Modeling Geometrical Effects of Parasitic and Contact Resistance of FET Devices”, MRS Mat. Res. Symp. Proc., 427 (1996), 147–152 | DOI

[9] G.K.Reeves, H.B.Harrison, “Using TLM Principles to Determine MOSFET Contact and Parasitic Resistance”, Solid-State Electronics, 41:8 (1997), 1067–1074 | DOI

[10] N.Shrestha, G.K.Reeves, P.W.Leech, Y.Pan, A.S.Holland, “Analytical test structure model for determining lateral effects of tri-layer ohmic contact beyond the contact edge”, Facta Universitatis, Series: Electronics and Energetics, 30:2 (2017), 257–265 | DOI | MR

[11] N.Sha, L.P.J.Kenney, B.Heller, M.Moatamedi, “A Finite Element Model to Identify Electrode Influence on Current Distribution in the Skin”, Artificial Organs, 32:8 (2008), 639–643 | DOI

[12] T.Keller, A.Kuhn, “Electrodes for transcutaneous (surface) electrical stimulation”, Journal of Automatic Control, University of Belgrade, 18:2 (2008), 35–45 | DOI

[13] T.Keller, A.Kuhn, “Skin properties and the influence on electrode design for transcutaneous (surface) electrical stimulation”, Chapter in IFMBE proceedings, 25:9 (2010), 492–495 | DOI

[14] M.Prodanovic, J.Malesevic, M.Filipovic, T.Jevtic, G.Bijelic, N.Malesevic, “Numerical Simulation of the Energy Distribution in Biological Tissues During Electrical Stimulation”, Serbian Journal of Electrical Engineering, 10:1 (2013), 165–173 | DOI