Chebyshev polynomials with zeros outside the open arc segment
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 1, pp. 18-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of unitary polynomials of degree $n$ with real coefficients least deviating from zero on an arbitrary fixed arc of a circle with a zero set outside an open segment of the same arc is considered. The description of the extremal polynomials of the solution of this problem is given and their norm depending on the degree of the polynomial and the arc length is obtained.
Keywords: Chebyshev polynomials, polynomials least deviating from zero, zero set, polynomials with real coefficients.
@article{JSFU_2024_17_1_a2,
     author = {Natalia N. Rybakova},
     title = {Chebyshev polynomials with zeros outside the open arc segment},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {18--26},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_1_a2/}
}
TY  - JOUR
AU  - Natalia N. Rybakova
TI  - Chebyshev polynomials with zeros outside the open arc segment
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2024
SP  - 18
EP  - 26
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2024_17_1_a2/
LA  - en
ID  - JSFU_2024_17_1_a2
ER  - 
%0 Journal Article
%A Natalia N. Rybakova
%T Chebyshev polynomials with zeros outside the open arc segment
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2024
%P 18-26
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2024_17_1_a2/
%G en
%F JSFU_2024_17_1_a2
Natalia N. Rybakova. Chebyshev polynomials with zeros outside the open arc segment. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 1, pp. 18-26. http://geodesic.mathdoc.fr/item/JSFU_2024_17_1_a2/

[1] E.B.Bayramov, “Polynomials least evasive from zero on the square of the complex plane”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 3, 2018, 5–15 (in Russian) | DOI | MR

[2] M.L.Sodin, P.M.Yuditsky, “Functions least evasive from zero on closed subsets of the real axis”, St. Petersburg Math. J., 4:2 (1993), 201–249 | MR

[3] S.V.Tyshkevich, “On Chebyshev polynomials on arcs of the circle”, Math. Note, 81:6 (2007), 851–853 | DOI | MR | Zbl

[4] V. N. Dubinin, “Methods of geometric function theory in classical and modern problems for polynomials”, Russian Math. Surveys, 67:4 (2012), 599–684 | DOI | MR | Zbl

[5] V.V.Arestov, A.S.Mendelev, “Trigonometric polynomials of least deviation from zero in measure and related problems”, Journal of Approximation Theory, 162 (2010), 1852–1878 | DOI | MR | Zbl

[6] A.L.Lukashov, S.V.Tyshkevich, “Extremal polynomials on arcs of a circle with zeroes on these arcs”, Izv. Nats. Akad. Nauk Armenii Mat., 3 (2009), 19–29 | MR

[7] A.E.Pestovskaya, “Polynomials least evasive from zero with a restriction on the location of roots”, Trudy Inst. Mat. i Mekh. UrO RAN, 28, no. 3, 2022, 166–175 (in Russian) | DOI | MR

[8] J.P.Thiran, C.Detail, “Chebyshev Polynomials on Circular Arcs in the Complex Plane”, Progress in Approximation Theory, Academic Press, Boston, MA, 1991, 771–786 | MR

[9] L.S.Maergoiz, N.N.Rybakova, “Chebyshev polynomials with zeros lying on a circular arc”, Dokl. Math., 79:3 (2009), 319–321 | DOI | MR | Zbl

[10] L.S.Maergoiz, N.N.Rybakova, “Chebyshev polynomials with zeros on a circle and adjacent problems”, St. Petersburg Math., 25:6 (2014), 965–979 | DOI | MR | Zbl

[11] N.I.Akhiezer, Lectures on approximation theory, Nauka, M., 1965 (in Russian) | MR

[12] P.K.Suetin, Classical orthogonal polynomials, 2nd Ed., add., Nauka, M., 1979 (in Russian) | MR | Zbl

[13] N.N.Rybakova, “Chebyshev polynomials with zero mnemonics, which are located next to the selected shell of the arc”, Informative technologies in mathematics and mathematical education, materials of the XI Xerosial with the international section of the de facto-methodological conference established on the 90th anniversary of P. Astafyev (KSPU, Krasnoyarsk, November 10-11, 2022), Krasnoyarsk. gos. ped. un-t em. S.P. Astafiev, Krasnoyarsk, 2022, 29–32 (Electronic resource)