Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2024_17_1_a2, author = {Natalia N. Rybakova}, title = {Chebyshev polynomials with zeros outside the open arc segment}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {18--26}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_1_a2/} }
TY - JOUR AU - Natalia N. Rybakova TI - Chebyshev polynomials with zeros outside the open arc segment JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2024 SP - 18 EP - 26 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2024_17_1_a2/ LA - en ID - JSFU_2024_17_1_a2 ER -
Natalia N. Rybakova. Chebyshev polynomials with zeros outside the open arc segment. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 1, pp. 18-26. http://geodesic.mathdoc.fr/item/JSFU_2024_17_1_a2/
[1] E.B.Bayramov, “Polynomials least evasive from zero on the square of the complex plane”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 3, 2018, 5–15 (in Russian) | DOI | MR
[2] M.L.Sodin, P.M.Yuditsky, “Functions least evasive from zero on closed subsets of the real axis”, St. Petersburg Math. J., 4:2 (1993), 201–249 | MR
[3] S.V.Tyshkevich, “On Chebyshev polynomials on arcs of the circle”, Math. Note, 81:6 (2007), 851–853 | DOI | MR | Zbl
[4] V. N. Dubinin, “Methods of geometric function theory in classical and modern problems for polynomials”, Russian Math. Surveys, 67:4 (2012), 599–684 | DOI | MR | Zbl
[5] V.V.Arestov, A.S.Mendelev, “Trigonometric polynomials of least deviation from zero in measure and related problems”, Journal of Approximation Theory, 162 (2010), 1852–1878 | DOI | MR | Zbl
[6] A.L.Lukashov, S.V.Tyshkevich, “Extremal polynomials on arcs of a circle with zeroes on these arcs”, Izv. Nats. Akad. Nauk Armenii Mat., 3 (2009), 19–29 | MR
[7] A.E.Pestovskaya, “Polynomials least evasive from zero with a restriction on the location of roots”, Trudy Inst. Mat. i Mekh. UrO RAN, 28, no. 3, 2022, 166–175 (in Russian) | DOI | MR
[8] J.P.Thiran, C.Detail, “Chebyshev Polynomials on Circular Arcs in the Complex Plane”, Progress in Approximation Theory, Academic Press, Boston, MA, 1991, 771–786 | MR
[9] L.S.Maergoiz, N.N.Rybakova, “Chebyshev polynomials with zeros lying on a circular arc”, Dokl. Math., 79:3 (2009), 319–321 | DOI | MR | Zbl
[10] L.S.Maergoiz, N.N.Rybakova, “Chebyshev polynomials with zeros on a circle and adjacent problems”, St. Petersburg Math., 25:6 (2014), 965–979 | DOI | MR | Zbl
[11] N.I.Akhiezer, Lectures on approximation theory, Nauka, M., 1965 (in Russian) | MR
[12] P.K.Suetin, Classical orthogonal polynomials, 2nd Ed., add., Nauka, M., 1979 (in Russian) | MR | Zbl
[13] N.N.Rybakova, “Chebyshev polynomials with zero mnemonics, which are located next to the selected shell of the arc”, Informative technologies in mathematics and mathematical education, materials of the XI Xerosial with the international section of the de facto-methodological conference established on the 90th anniversary of P. Astafyev (KSPU, Krasnoyarsk, November 10-11, 2022), Krasnoyarsk. gos. ped. un-t em. S.P. Astafiev, Krasnoyarsk, 2022, 29–32 (Electronic resource)