Three-dimensional simulation of heat and moisture transfer in the human bronchial tree
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 1, pp. 136-145.

Voir la notice de l'article provenant de la source Math-Net.Ru

A mathematical model of heat and mass transfer in human airways has been developed. Three–dimensional calculations of the distribution of heat and humidity of inhaled air in the human bronchial tree have been performed. The modeling has been performed on the basis of the analytical model of the complete bronchial tree developed earlier by the authors by the numerical method of stage–by–stage calculation. A comparison with experimental data on heat transfer in lungs shows that the model describes the change in the air temperature along the bronchial branch quite well. The process of breathing with a heated helium–oxygen mixture has been considered. This mixture is used to treat patients with bronchial asthma and COVID–19. It has been shown that the temperature of the heated helium–oxygen mixture in human lungs decreases faster than that of heated air. The results show that the thermal effect is observed not in the entire human bronchial tree, but only in the upper airways.
Keywords: bronchial tree, mathematical modeling, human lungs, heat and moisture transfer, thermoheliox, thermal helium–oxygen mixture.
@article{JSFU_2024_17_1_a11,
     author = {Alexey E. Medvedev and Polina S. Golysheva},
     title = {Three-dimensional simulation of heat and moisture transfer in the human bronchial tree},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {136--145},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_1_a11/}
}
TY  - JOUR
AU  - Alexey E. Medvedev
AU  - Polina S. Golysheva
TI  - Three-dimensional simulation of heat and moisture transfer in the human bronchial tree
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2024
SP  - 136
EP  - 145
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2024_17_1_a11/
LA  - en
ID  - JSFU_2024_17_1_a11
ER  - 
%0 Journal Article
%A Alexey E. Medvedev
%A Polina S. Golysheva
%T Three-dimensional simulation of heat and moisture transfer in the human bronchial tree
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2024
%P 136-145
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2024_17_1_a11/
%G en
%F JSFU_2024_17_1_a11
Alexey E. Medvedev; Polina S. Golysheva. Three-dimensional simulation of heat and moisture transfer in the human bronchial tree. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 1, pp. 136-145. http://geodesic.mathdoc.fr/item/JSFU_2024_17_1_a11/

[1] E.R.McFadden, B.M.Pichurko, H.F Bowman, et al., “Thermal mapping of the airways in humans”, J. Appl. Physiol., 58 (1985), 564–570 | DOI

[2] S.N.Ryan, N.Rankin, E.Meyer, R.Williams, “Energy balance in the intubated human airway is an indicator of optimal gas conditioning”, Crit. Care Med., 30 (2002), 355–361 | DOI

[3] E.R.Weibel, Morphometry of the human lung, Springer Berlin Heidelberg, Berlin–Heidelberg, 1963

[4] A.F. Tena, J.F.Francos, E.Alvarez, P.Casan, “A three–dimensional in SILICO model for the simulation of inspiratory and expiratory airflow in humans”, Eng. Appl. Comput. Fluid. Mech., 9 (2015), 187–198

[5] A.F.Tena, J.Fernandez, E.Alvarez, et al, “Design of a numerical model of lung by means of a special boundary condition in the truncated branches”, Int. J. Numer. Method. Biomed. Eng., 33 (2017), 1–9 | DOI | MR

[6] A.Fernandez–Tena, A.C Marcos, R.Agujetas, C.Ferrera, “Simulation of the human airways using virtual topology tools and meshing optimization”, Biomech. Model. Mechanobiol., 17 (2018), 465–477 | DOI

[7] H.Kitaoka, R.Takaki, B.Suki, “A three-dimensional model of the human tree”, J. Appl. Physiol., 87 (1999), 2207–2217 | DOI

[8] A.E.Medvedev, P.S.Gafurova, “Analytical design of the human bronchial tree for healthy patients and patients with obstructive pulmonary diseases”, Math. Biol. Bioinf., 14 (2019), 635–648 | DOI

[9] A.E.Medvedev, V.M.Fomin, P.S Gafurova, “Three-dimensional model of the human bronchial tree — modeling of the air flow in normal and pathological cases”, J. Appl. Mech. Tech. Phys., 61 (2020), 1–13 | DOI | MR | Zbl

[10] A.E.Medvedev, P.S.Golysheva, “Simulation of air motion in human lungs during breathing. Dynamics of liquid droplet precipitation in the case of medicine drug aerosols”, Math. Biol. Bioinf., 17 (2022), t14–t29 | DOI

[11] A.I.Dyachenko, O.V.Manyugina, “Mathematical model of influence of the respiration by heated helium–oxigen in heat and mass exchange”, Russ. J. Biomechenics, 7 (2003), 61–68 (in Russian)

[12] E.Javaheri, F.M.Shemirani, M.Pichelin, et al., “Deposition modeling of hygroscopic saline aerosols in the human respiratory tract: Comparison between air and helium–oxygen as carrier gases”, J. Aerosol Sci., 64 (2013), 81–93 | DOI

[13] N.A.Belyakov, V.B.Serikov, M.S.Ramm, “Steady–state modeling of mass and heat transfer in the respiratory tract”, Biophysics, 31 (1986), 901–907 (in Russian)

[14] V.B.Serikov, M.S.Ramm, G.I.Pasternak, N.A.Beliako, “Role of mass transfer in the heat exchange in the respiratory tract (mathematical model)”, Sechenov Physiol. Journal USSR, 62 (1986), 1415–1418 (in Russian)

[15] M.Tawhai, A.J.Pullan, P.J.Hunter, “Generation of an anatomically based three-dimensional model of the conducting airways”, Ann. Biomed. Eng., 28 (2000), 793–802 | DOI

[16] L.V.Shogenova, S.D.Varfolomeev, V.I. Bykov, et al., “Effect of thermal helium–oxygen mixture on viral load in COVID–19”, Pul'monologiya, 30 (2020), 533–543 | DOI

[17] S.P.Grigoryev, E.O.Loshkaryeva, I.V.Zolkina, et al., “The application of thermogeliox with nebulizer therapy in complex treatment of patients with bronchial asthma”, Russ. Med. J., 4 (2012), 3–5 (in Russian) | DOI

[18] L.M.Hanna, P.W.Scherer, “A theoretical model of localized heat and water vapor transport in the human respiratory tract”, J. Biomech. Eng., 108 (1986), 19–27 | DOI