Current state and development of the theory of curing high-energy composite polymer materials
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 1, pp. 106-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

Within the framework of a two-component medium, based on a phenomenological approach, a system of governing equations has been developed that describes the thermomechanical behavior of an elastomer highly filled with fine particles under conditions of a curing reaction (vulcanization) with adhesive contact conditions at the filler-matrix interface. The model is intended to describe the stress-strain state in the temperature range covering the intervals of phase and relaxation transitions at finite deformations. The basic equations of thermo-mechano-chemistry turn out to be related to the mutual influence of the stress-strain state of the curing elastomer and reaction kinetics. The results of numerical experiments are presented that demonstrate the possibility of describing the characteristic features of deformation processes characteristic of highly filled elastomers during curing.
Keywords: high-filled polymer, finite element method, curing resudual stress, viscoelasticity, chemical shrinkage.
Mots-clés : cure
@article{JSFU_2024_17_1_a10,
     author = {Konstantin A. Chekhonin},
     title = {Current state and development of the theory of curing high-energy composite polymer materials},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {106--114},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_1_a10/}
}
TY  - JOUR
AU  - Konstantin A. Chekhonin
TI  - Current state and development of the theory of curing high-energy composite polymer materials
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2024
SP  - 106
EP  - 114
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2024_17_1_a10/
LA  - en
ID  - JSFU_2024_17_1_a10
ER  - 
%0 Journal Article
%A Konstantin A. Chekhonin
%T Current state and development of the theory of curing high-energy composite polymer materials
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2024
%P 106-114
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2024_17_1_a10/
%G en
%F JSFU_2024_17_1_a10
Konstantin A. Chekhonin. Current state and development of the theory of curing high-energy composite polymer materials. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 1, pp. 106-114. http://geodesic.mathdoc.fr/item/JSFU_2024_17_1_a10/

[1] A.AY.Malkin, V.P.Begishev, Chemical forming of polymers, Chemistry, M., 1991 (in Russian)

[2] V.V.Moskvitin, Resistance viscoelastic of materials, Science, M., 1972 (in Russian)

[3] A.M.Lipanov, M.Y.Al'es, O.I.Evstafiev, “Numerical modeling to an stresses – deformated status polymerization of polymeric systems”, J. High-molecular of connection, 33:1 (1991), 52–59 (in Russian)

[4] V.K.Bulgakov, K.A.Chekhonin, “Modeling of a 3D Problem of compression forming system “Composite shell – low compressible consolidating filler””, J. Mathematical Modeling, 4 (2002), 121–131 (in Russian)

[5] K.A.Chekhonin, “The Essential priciples for theory curing process solid propellant grain”, Vestnik ITPS, 12:1 (2016), 131–145 (in Russian)

[6] V.K.Bulgakov, K.A.Chekhonin, The Biseline theory mixed finite element method, Khabarovsk State Technical University, Khabarovsk, 1999 (in Russian)

[7] S.Özüpek, “Computational procedure for the life assessment of solid rocket motors”, J. Spacecr. Rockets, 47 (2010), 639–648 | DOI

[8] K.A.Chekhonin, V.D.Vlasenko, “Gradient algorithm for optimizing the temperature-conversion problem during curing of highly filled polymer materials”, Informatika i sistemy upravleniya, 62:4 (2019), 58–70 (in Russian) | DOI

[9] K.A.Chekhonin, V.D.Vlasenko, “Numerical Modelling of Compression Cure High-Filled Polimer Material”, J. Sib. Fed. Univ. Math. Phys., 14:6 (2021), 805–814 | DOI

[10] K.A.Chekhonin, “On the thermodynamic consistency of the coupled model of elastomer curing under finite deformations”, Far Eastern Mathematical J., 22:1 (2022), 107–118 (in Russian) | DOI | MR | Zbl

[11] K.A.Chekhonin, “Micromechanical model of high-energy material during curing”, Far Eastern Mathematical J., 22:1 (2022), 119–124 (in Russian) | MR | Zbl

[12] K.A.Chekhonin, V.D.Vlasenko, “Multiscale modeling of the effect of curing stresses on the deformation properties and damageability of high-energy materials”, AIP Conference Proceedings, 2504 (2021), 0200001 | DOI

[13] https://cae-fidesys.com

[14] H.M.Rad,, S.T.Roosta, S.H.M.Shariati, S.G.Hosseini, “Numerical Simulation of HTPB Resin Curing Process Using OpenFOAMand Study the Effect of Different Conditions on its Curing Time”, Propellants Explos. Pyrotech., 46 (2021), 1447–1457 | DOI