Two heuristic algorithms for RCPSP with NPV criterion
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 5, pp. 639-650.

Voir la notice de l'article provenant de la source Math-Net.Ru

The resource constrained project scheduling problem (RCPSP) with the criterion of maximizing the net present value (NPV) is considered. We propose two heuristic algorithms for RCPSP based on idempotent algebra methods. To assess the quality of the algorithms, a zero-one integer linear programming model was built for the problem under consideration. This model makes it possible to find exact solutions to the problem using the IBM ILOG CPLEX. Experiments show that the proposed heuristic algorithms demonstrate high performance. In a series of experiments, schedules corresponding to exact solutions were obtained, among other things.
Keywords: scheduling problem, investment project, NPV, idempotent mathematics, genetic algorithm, simulated annealing.
@article{JSFU_2023_16_5_a9,
     author = {Aleksandr M. Bulavchuk and Daria V. Semenova},
     title = {Two heuristic algorithms for {RCPSP} with {NPV} criterion},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {639--650},
     publisher = {mathdoc},
     volume = {16},
     number = {5},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_5_a9/}
}
TY  - JOUR
AU  - Aleksandr M. Bulavchuk
AU  - Daria V. Semenova
TI  - Two heuristic algorithms for RCPSP with NPV criterion
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2023
SP  - 639
EP  - 650
VL  - 16
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2023_16_5_a9/
LA  - en
ID  - JSFU_2023_16_5_a9
ER  - 
%0 Journal Article
%A Aleksandr M. Bulavchuk
%A Daria V. Semenova
%T Two heuristic algorithms for RCPSP with NPV criterion
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 639-650
%V 16
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_5_a9/
%G en
%F JSFU_2023_16_5_a9
Aleksandr M. Bulavchuk; Daria V. Semenova. Two heuristic algorithms for RCPSP with NPV criterion. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 5, pp. 639-650. http://geodesic.mathdoc.fr/item/JSFU_2023_16_5_a9/

[1] S.Hartmann, D.Briskorn, “An updated survey of variants and extensions of the resource-constrained project scheduling problem”, European Journal of Operational Research, 1 (2022), 1–14 | DOI | MR | Zbl

[2] F.Habibi, F.Barzinpour, S.Sadjadi, “Resource-constrained project scheduling problem: review of past and recent developments”, Journal of Project Management, 3 (2018), 55–88 | DOI | MR

[3] A.Kazakovtseva, V.Servakh, “The complexity of the project scheduling problem with credits”, J. Appl. Industr. Math., 9:4 (2015), 489–496 | DOI | MR | Zbl

[4] A.Bulavchuk, D.Semenova, “Genetic algorithm based on idempotent algebra methods for RCPSP”, 2021 IEEE 15th International Conference on Application of Information and Communication Technologies (AICT), 2021, 1–4

[5] A.Bulavchuk, D.Semenova, “Application of idempotent algebra methods in genetic algorithm for solving the scheduling problem”, Prikl. Diskr. Mat., 58 (2022), 112–124 (in Russian) | DOI | MR | Zbl

[6] J.-H.Cho, Y.-D.Kim, “A Simulated annealing algorithm for resource constrained project scheduling problems”, The Journal of the Operational Research Society, 48 (1997), 736–744 | DOI | Zbl

[7] N.-H.Pan, T.-C.Hsiang, W.-T.Chen, “Using hybrid simulated annealing algorithm in resource-constrained project scheduling problem”, The International Journal of Organizational Innovation, 12 (2020), 25–46

[8] K.Bouleimen, H.Lecocq, “A new effcient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version”, European Journal of Operational Research, 149 (2003), 268–281 | DOI | MR | Zbl

[9] A.Lopatin, “Simulated annealing”, Stochastic optimization in computer science, 1 (2005), 133–149 (in Russian)

[10] Project scheduling problem library, (accessed on 25 January 2023) https://www.om-db.wi.tum.de/psplib/

[11] H.Shavandi, A.Najafi, A.Moslehirad, “Fuzzy project scheduling with discounted cash flows”, Economic Computation and Economic Cybernetics Studies and Research, 46 (2012)

[12] B.Ashtiani, R.Leus, M.Aryanezhad, “New competitive results for the stochastic resource-constrained project scheduling problem: Exploring the benefits of pre-processing”, Journal of Scheduling, 14 (2011), 157–171 | DOI | MR | Zbl

[13] A.Bulavchuk, D.Semenova, “Features of risk analysis in solving RCPSP using the GASPIA algorithm”, 2022 IEEE International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON), 2022, 970–973 | DOI

[14] A.El-Kholy, M.El-Shikh, S.Abd-Elhay, Which fuzzy ranking method is best for maximizing fuzzy net present value?, Arabian Journal for Science and Engineering, 42 (2017), 4079–4098 | DOI | MR | Zbl

[15] N.Krivulin, Methods of idempotent algebra in problems of complex systems modeling and analysis, St. Petersburg University Press, St. Petersburg, Russia, 2009 (in Russian)