Effect of permittivity on the ionic boundary layer upon protonation of lithium niobate
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 5, pp. 611-619.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents the results of a numerical study of the behavior of proton exchange reaction products after they enter benzoic acid, which interacts with a lithium niobate crystal. The theoretical model based on the continuous media approximation considers the convective transfer and diffusion of positively charged lithium ions and negatively charged benzoate ions. Additionally, the possibility of their recombination with the subsequent formation of lithium benzoate molecules is taken into account. The results obtained correspond to stationary, uniform along the interface, profiles of the ion concentration and electric potential. In the process of establishment, benzoate ions form an ionic boundary layer. An analysis is made of the influence of the dielectric constant of the carrier liquid on its characteristics.
Keywords: proton exchange, boundary layer, permittivity, numerical simulation.
@article{JSFU_2023_16_5_a6,
     author = {Vitaly A. Demin and Maxim I. Petukhov and Roman S. Ponomarev and Mariana K. Kuneva},
     title = {Effect of permittivity on the ionic boundary layer upon protonation of lithium niobate},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {611--619},
     publisher = {mathdoc},
     volume = {16},
     number = {5},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_5_a6/}
}
TY  - JOUR
AU  - Vitaly A. Demin
AU  - Maxim I. Petukhov
AU  - Roman S. Ponomarev
AU  - Mariana K. Kuneva
TI  - Effect of permittivity on the ionic boundary layer upon protonation of lithium niobate
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2023
SP  - 611
EP  - 619
VL  - 16
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2023_16_5_a6/
LA  - en
ID  - JSFU_2023_16_5_a6
ER  - 
%0 Journal Article
%A Vitaly A. Demin
%A Maxim I. Petukhov
%A Roman S. Ponomarev
%A Mariana K. Kuneva
%T Effect of permittivity on the ionic boundary layer upon protonation of lithium niobate
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 611-619
%V 16
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_5_a6/
%G en
%F JSFU_2023_16_5_a6
Vitaly A. Demin; Maxim I. Petukhov; Roman S. Ponomarev; Mariana K. Kuneva. Effect of permittivity on the ionic boundary layer upon protonation of lithium niobate. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 5, pp. 611-619. http://geodesic.mathdoc.fr/item/JSFU_2023_16_5_a6/

[1] M.Kuneva, “Optical waveguides obtained via proton exchange technology in LiNbO$_3$ and LiTaO$_3$ - a short review”, International Journal of Scientific Research in Science and Technology, 2 (2016), 40–50

[2] J.L.Jackel, C.E.Rice, J.J.Veselka, “Proton exchange for high-index waveguides in LiNbO$_3$”, Appl. Phys. Lett., 41 (1982), 607–608 | DOI

[3] J.L.Jackel, “Proton exchange: past, present, and future”, Proc. SPIE, 1583 (1991), 54–63 | DOI | MR

[4] M.De Micheli, J.Botineau, S.Neveu, P.Sibillot, D.B.Ostrowsky, “Independent control of index and profiles in proton-exchanged lithium niobate guides”, Optics Lett., 8 (1983), 114–115 | DOI

[5] E.Y.B.Pun, T.C.Kong, P.S.Chung, H.P.Chan, “Index profile of proton-exchanged waveguides in LiNbO$_3$ using pyrophosphoric acid”, Electr. Lett., 26 (1990), 81–82 | DOI

[6] N.Goto, G.L.Yip, “Characterization of proton-exchange and annealed LiNbO$_3$ waveguides with pyrophosphoric acid”, Appl. Optics, 28 (1989), 60–65 | DOI

[7] I.V.Petukhov, V.I.Kichigin, A.P.Skachkov, S.S.Mushinsky, D.I.Shevtsov, A.BVolyntsev, “Microindentation of proton exchange layers on X cut of lithium niobate crystals”, Materials Chemistry and Physics, 135 (2012), 493–496 | DOI

[8] S.T.Vohra, A.R.Mickelson, S.E.Asher, “Diffusion characteristics and waveguiding properties of proton-exchanged and annealed LiNbO$_3$ channel waveguides”, J. Appl. Phys., 66 (1989), 5161–5174 | DOI

[9] V.A.Demin, M.I.Petukhov, R.S.Ponomarev, A.V.Topova, “On a role of anisotropy and nonlinear diffusive effects during the construction of waveguides in the lithium niobate”, Bulletin of Perm University. Physics, 1 (2021), 49–58 | DOI

[10] V.I.Kichigin, I.V.Petukhov, S.S.Mushinsky, V.A.Oborin, A.M.Minkin, L.N.Malinina, D.I.Shevtsov, A.B.Volyntsev, “Structure and properties of proton exchange waveguides on Z cut of lithium niobate crystal fabricated in molten benzoic acid with the addition of lithium benzoate”, International Conference and Seminar of Young Specialists on Micro/Nanotechnologies and Electron Devices, 2012, 238–241 | DOI

[11] Yu.N.Korkishko, V.A.Fedorov, “Structural phase diagram of H$_x$Li$_{1-x}$NbO$_3$ waveguides: the correlation between optical and structural properties”, IEEE J. Sel. Top. Quantum Electron, 2 (1992), 187–196 | DOI

[12] I.V.Petukhov, V.I.Kichigin, S.S.Mushinskii, D.I.Sidorov, O.R.Semenova, “The influence of plasma treatment of lithium niobate crystal surface on the proton exchange process in molten benzoic acid”, Vestnik Permskogo universiteta. Seriya “Khimiya”, 9 (2019), 371–379

[13] S.S.Mushinsky, A.M.Minkin, I.V.Petukhov, V.I.Kichigin, D.I.Shevtsov, L.N.Malinina, A.B.Volyntsev, M.M.Neradovskiy, V.Ya.Shur, “Water Effect on Proton Exchange of X-cut Lithium Niobate in the Melt of Benzoic Acid”, Ferroelectrics, 476 (2015), 84–93 | DOI

[14] V.A.Demin, M.I.Petukhov, R.S.Ponomarev, “An ionic boundary layer near the lithium niobate surface in the proton exchange process”, Surface Engineering and Applied Electrochemistry, 59 (2023), 321–328 | DOI

[15] S.S.Mushinsky, V.I.Kichigin, I.V.Petukhov, etc., “Structure and properties of proton exchanged layers in +Z cut and -Z cut lithium niobate”, Ferroelectrics, 443 (2013), 20–34 | DOI

[16] L.D.Landau, E.M.Lifschitz, Course of Theoretical Physics, v. 6, Fluid Mechanics, Pergamon press, Oxford, 2006 | MR

[17] F.Pontiga, A.Castellanos, “Physical mechanisms of instability in a liquid layer subjected to an electric field and a thermal gradient”, Phys. Fluids, 6 (1994), 1684 | DOI | Zbl

[18] G.Z.Gershuni, E.M.Zhukhovitskii, Convective stability of incompressible fluids, Keter Publishing House, Jerusalem, 1976

[19] E.L.Tarunin, Vychislitel'nyj eksperiment v zadachah svobodnoj konvekcii, Izdatel'stvo Irkutskogo universiteta, 1990

[20] A.Yurquina, M.E.Manzur, P.Brito, R.Manzo, M.A.A.Molina, “Solubility and dielectric properties of benzoic acid in a binary solvent: water-ethylene glycol”, Journal of Molecular Liquids, 108 (2003), 119–133 | DOI

[21] F.P.Parungo, J.P.Lodge, “Molecular structure and ice nucleation of some organics”, Journal of Atmospheric Sciences, 22 (1965), 309–313 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[22] M.Jorge, J.R.B.Gomes, M.C.Barrera, “The dipole moment of alcohols in the liquid phase and in solution”, Journal of Molecular Liquids, 356 (2022), 119033 | DOI

[23] E.U.Franck, R.Deul, “Dielectric behaviour of methanol and related polar fluids at high pressures and temperatures”, Faraday Discussions of the Chemical Society, 66 (1978), 191–198 | DOI