Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2023_16_5_a5, author = {Brahim Benali and Said Douis and Mohammed Tayeb Meftah}, title = {Green function of quantum particle moving in two-dimensional annular potential}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {598--610}, publisher = {mathdoc}, volume = {16}, number = {5}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_5_a5/} }
TY - JOUR AU - Brahim Benali AU - Said Douis AU - Mohammed Tayeb Meftah TI - Green function of quantum particle moving in two-dimensional annular potential JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2023 SP - 598 EP - 610 VL - 16 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2023_16_5_a5/ LA - en ID - JSFU_2023_16_5_a5 ER -
%0 Journal Article %A Brahim Benali %A Said Douis %A Mohammed Tayeb Meftah %T Green function of quantum particle moving in two-dimensional annular potential %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2023 %P 598-610 %V 16 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2023_16_5_a5/ %G en %F JSFU_2023_16_5_a5
Brahim Benali; Said Douis; Mohammed Tayeb Meftah. Green function of quantum particle moving in two-dimensional annular potential. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 5, pp. 598-610. http://geodesic.mathdoc.fr/item/JSFU_2023_16_5_a5/
[1] G.Green, An Essay on the application of Mathematical analysis to the theory of electricity and magnetism, in privately at the author's expense, Nottingham, 1828; G. Green, Cambridge Edited by N. M. Ferrers, Gonville and Caius College, M.A., 1871
[2] H. Von Helmholtz, Die Lehre von den Tonempfindungenals Physiologische Grundlagefur die Theorie der Musik, Sexhste Ausgabe Mit Dem Bildnis des Verfasffers und 66 Abbildungen, Springer Fachmedien Wiesbaden Gmbh, 1913
[3] Y.A.Melnikov, “Green's function of a thin circular plate with elastically supported edge”, Eng. Anal. Bound. Elem., 25 (2001), 669–676 | DOI | Zbl
[4] E.Pan, “General time-dependent Green's functions of line forces in a two-dimensional, anisotropic, elastic, and infinite solid”, Eng. Anal. Bound. Elem., 124:201, 174–184 | DOI | MR | Zbl
[5] J.Kidawa-Kukla, “Application of the Green's function method to the problem of thermally induced vibration of a circular plate”, Scientific Research of the Institute of Mathematics and Computer Science, 9 (2010), 53–60
[6] J.Kidawa-Kukla, “Temperature distribution in an annular plate with a moving discrete heat generation source”, Scientific Research of the Institute of Mathematics and Computer Science, 8 (2009), 77–84
[7] S.Kukla, U.Siedlecka, I.Zamorska, “Green's functions for interior and exterior Helmholtz problems”, Scientific Research of the Institute of Mathematics and Computer Science, 11 (2012), 53–62 | DOI
[8] S.K.Adhikari, “Quantum scattering in two dimensions”, American Journal of Physics, 54 (1986), 362 | DOI | MR
[9] R.Layeghnejad, M.Zare, R.Moazzemi, “Dirac particle in a spherical scalar potential well”, Phys. Rev. D, 84 (2011), 125026 | DOI
[10] N.Yoshio, “Finite depth spherical well model for excited states of ultra small semiconductor particles: an application”, J. Phys. Chem., 95 (1991), 5054–5058 | DOI
[11] I.M.Nemenman, A.S.Vernon JrSilbergleit, A.S.Silbergleit, “Explicit Green's function of a boundary value problem for a sphere and trapped flux analysis in Gravity Probe B experiment”, J. Appl. Phys., 86 (1999), 614–624 | DOI
[12] C.G.Neumann, “Revision einigerallgemeiner Satzeaus der Theorie des Newton'schen Potentiales”, Math. Ann., 3 (1871), 424–434 | DOI | MR
[13] Y.Nosaka, “Finite depth spherical well model for excited states of ultrasmall semiconductor particles: an application”, J. Chem. Phys., 95 (1991), 5054–5058 | DOI
[14] Y.Tago, K.Narasimha Swamy, “Mean spherical model for the square-well potential”, Phys. Lett. A, 45 (1973), 37–38 | DOI
[15] R.Jean-Pierre, “A very elementary proof of the Malgrange-Ehrenpreis theorem”, The American Mathematical Monthly, 98 (1991), 518–523 | DOI | MR | Zbl
[16] M.Krasnov, A.Kiselev, G.Makarenko, Problems and Exercices in Integral equations, Edition Mir, M., 1971 | MR