Contact mappings of jet spaces
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 5, pp. 583-590.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider mappings of jet spaces that preserve the module of canonical Pfaffian forms, but are not generally invertible. These mappings are called contact. A lemma on the prolongation of contact mappings is proved. Conditions are found under which these mappings transform solutions of some partial differential equations into solutions of other equations. Examples of contact mappings of differential equations are given. We consider contact mappings depending on a parameter and give example of differential equation invariant under the maps.
Keywords: canonical differential forms
Mots-clés : jets, invariant solutions.
@article{JSFU_2023_16_5_a3,
     author = {Oleg V. Kaptsov},
     title = {Contact mappings of jet spaces},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {583--590},
     publisher = {mathdoc},
     volume = {16},
     number = {5},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_5_a3/}
}
TY  - JOUR
AU  - Oleg V. Kaptsov
TI  - Contact mappings of jet spaces
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2023
SP  - 583
EP  - 590
VL  - 16
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2023_16_5_a3/
LA  - en
ID  - JSFU_2023_16_5_a3
ER  - 
%0 Journal Article
%A Oleg V. Kaptsov
%T Contact mappings of jet spaces
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 583-590
%V 16
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_5_a3/
%G en
%F JSFU_2023_16_5_a3
Oleg V. Kaptsov. Contact mappings of jet spaces. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 5, pp. 583-590. http://geodesic.mathdoc.fr/item/JSFU_2023_16_5_a3/

[1] L.V.Ovsiannikov, Group Analysis of Differential Equations, Academic Press, New York, 1982 | MR | Zbl

[2] V.I.Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, 1978 | MR | Zbl

[3] N.H.Ibragimov, Transformation Groups Applied to Mathematical Physics, Reidel, Boston, 1985 | MR | Zbl

[4] G.Bluman, S.Kumei, Symmetries and Differential Equations, Springer, NY, 1989 | MR | Zbl

[5] P.Olver, Applications of Lie Groups to Differential Equations, Springer, NY, 2000 | MR | Zbl

[6] N.H.Ibragimov (Ed.), CRC Handbook of Lie Group Analysis of Differential Equations, v. I-III, CRC Press, Boca Raton, 1995 | MR | Zbl

[7] I.S.Krasilshchik, A.M.Vinogradov (eds.), Symmetries and Conservation Laws for Differential Equations of Mathematical Physics, AMS, 1999 | MR | Zbl

[8] L.Euler, Foundations of Integral Calculus, v. 3, GIFML, M., 1958 (in Russian) | MR

[9] O.V.Kaptsov, Methods for integrating partial differential equations, Science, M., 2009 (in Russian)

[10] V.Matveev, M.Salle, Darboux Transformations and Solitons, Springer-Verlag, Berlin, 1991 | MR | Zbl

[11] J.R.Munkres, Analysis on Manifolds, CRC Press, Boca Raton, 1991 | MR

[12] O.Stormark, Lie's structural approach to PDE systems, Cambridge University Press, 2000 | MR