Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2023_16_5_a14, author = {Igor V. Frolenkov and Roman V. Sorokin and Ivan E. Zubrov}, title = {On the solvability of {Burgers-type} equation with special type of non-linearity}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {690--699}, publisher = {mathdoc}, volume = {16}, number = {5}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_5_a14/} }
TY - JOUR AU - Igor V. Frolenkov AU - Roman V. Sorokin AU - Ivan E. Zubrov TI - On the solvability of Burgers-type equation with special type of non-linearity JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2023 SP - 690 EP - 699 VL - 16 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2023_16_5_a14/ LA - en ID - JSFU_2023_16_5_a14 ER -
%0 Journal Article %A Igor V. Frolenkov %A Roman V. Sorokin %A Ivan E. Zubrov %T On the solvability of Burgers-type equation with special type of non-linearity %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2023 %P 690-699 %V 16 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2023_16_5_a14/ %G en %F JSFU_2023_16_5_a14
Igor V. Frolenkov; Roman V. Sorokin; Ivan E. Zubrov. On the solvability of Burgers-type equation with special type of non-linearity. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 5, pp. 690-699. http://geodesic.mathdoc.fr/item/JSFU_2023_16_5_a14/
[1] Yu.Ya.Belov, K.V.Korshun, Weak approximation method, Krasnoyarsk State University, Krasnoyarsk, 1999 (in Russian)
[2] I.V.Frolenkov, M.A.Darzhaa, “On the existence of solution of some problems for nonlinear loaded parabolic equations with Cauchy data”, Journal of Siberian Federal University. Mathematics $\$ Physics, 7 (2014), 173–185
[3] E.Kamke, The directory on the differential equations in partial derivatives of the first order, Nauka, M., 1966 (in Russian)
[4] Yu.Ya.Belov, I.V.Frolenkov, “Some identification problems of the coefficients in semilinearparabolic equations”, Doklady Mathematics, 404:5 (2005), 583–585 (in Russian) | MR | Zbl
[5] Yu.Ya.Belov, K.V.Korshun, “An identification problem of the source function for the Burgers equation”, Journal of Siberian Federal University. Mathematics $\$ Physics, 5:4 (2012), 497–506 (in Russian)