On the solvability of Burgers-type equation with special type of non-linearity
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 5, pp. 690-699.

Voir la notice de l'article provenant de la source Math-Net.Ru

A one-dimensional parabolic Burgers equation of special form with Cauchy data is considered in this paper. To prove the theorem on the solvability of this problem the method of weak approximation developed by Yu. Ya. Belov is used. The results of this paper enhance the results obtained in [2].
Keywords: inverse problem, Burgers type equation, Cauchy problem, method of weak approximation.
Mots-clés : parabolic equation
@article{JSFU_2023_16_5_a14,
     author = {Igor V. Frolenkov and Roman V. Sorokin and Ivan E. Zubrov},
     title = {On the solvability of {Burgers-type} equation with special type of non-linearity},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {690--699},
     publisher = {mathdoc},
     volume = {16},
     number = {5},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_5_a14/}
}
TY  - JOUR
AU  - Igor V. Frolenkov
AU  - Roman V. Sorokin
AU  - Ivan E. Zubrov
TI  - On the solvability of Burgers-type equation with special type of non-linearity
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2023
SP  - 690
EP  - 699
VL  - 16
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2023_16_5_a14/
LA  - en
ID  - JSFU_2023_16_5_a14
ER  - 
%0 Journal Article
%A Igor V. Frolenkov
%A Roman V. Sorokin
%A Ivan E. Zubrov
%T On the solvability of Burgers-type equation with special type of non-linearity
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 690-699
%V 16
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_5_a14/
%G en
%F JSFU_2023_16_5_a14
Igor V. Frolenkov; Roman V. Sorokin; Ivan E. Zubrov. On the solvability of Burgers-type equation with special type of non-linearity. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 5, pp. 690-699. http://geodesic.mathdoc.fr/item/JSFU_2023_16_5_a14/

[1] Yu.Ya.Belov, K.V.Korshun, Weak approximation method, Krasnoyarsk State University, Krasnoyarsk, 1999 (in Russian)

[2] I.V.Frolenkov, M.A.Darzhaa, “On the existence of solution of some problems for nonlinear loaded parabolic equations with Cauchy data”, Journal of Siberian Federal University. Mathematics $\$ Physics, 7 (2014), 173–185

[3] E.Kamke, The directory on the differential equations in partial derivatives of the first order, Nauka, M., 1966 (in Russian)

[4] Yu.Ya.Belov, I.V.Frolenkov, “Some identification problems of the coefficients in semilinearparabolic equations”, Doklady Mathematics, 404:5 (2005), 583–585 (in Russian) | MR | Zbl

[5] Yu.Ya.Belov, K.V.Korshun, “An identification problem of the source function for the Burgers equation”, Journal of Siberian Federal University. Mathematics $\$ Physics, 5:4 (2012), 497–506 (in Russian)