An inverse problem for pseudoparabolic equation with the mixed boundary condition
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 5, pp. 661-672

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the inverse problem on identification of the leading coefficient in the pseudoparabolic equation. The problem involves the mixed boundary condition. The unknown coefficient is recovered by additional integral boundary data. The existence and uniqueness of the strong solution are proved. The result concerns with the identification of the hydraulic properties of fissured medium.
Keywords: inverse problem, uniqueness.
Mots-clés : filtration, pseudoparabolic equation, existence
@article{JSFU_2023_16_5_a11,
     author = {Anna Sh. Lyubanova},
     title = {An inverse problem for pseudoparabolic equation with the mixed boundary condition},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {661--672},
     publisher = {mathdoc},
     volume = {16},
     number = {5},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_5_a11/}
}
TY  - JOUR
AU  - Anna Sh. Lyubanova
TI  - An inverse problem for pseudoparabolic equation with the mixed boundary condition
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2023
SP  - 661
EP  - 672
VL  - 16
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2023_16_5_a11/
LA  - en
ID  - JSFU_2023_16_5_a11
ER  - 
%0 Journal Article
%A Anna Sh. Lyubanova
%T An inverse problem for pseudoparabolic equation with the mixed boundary condition
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 661-672
%V 16
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_5_a11/
%G en
%F JSFU_2023_16_5_a11
Anna Sh. Lyubanova. An inverse problem for pseudoparabolic equation with the mixed boundary condition. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 5, pp. 661-672. http://geodesic.mathdoc.fr/item/JSFU_2023_16_5_a11/