Strongly algebraically closed MV-algebras
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 4, pp. 519-527.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this paper is to fully characterize strongly algebraic closed MV-algebras, extending a result of Lacava. Moreover we provide some computation relating orbit algebras, Wajsberg algebras and Łukasiewicz semirings.
Keywords: MV-algebra, strongly algebraically closed, orbit algebra.
@article{JSFU_2023_16_4_a9,
     author = {Ali Molkhasi},
     title = {Strongly algebraically closed {MV-algebras}},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {519--527},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a9/}
}
TY  - JOUR
AU  - Ali Molkhasi
TI  - Strongly algebraically closed MV-algebras
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2023
SP  - 519
EP  - 527
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a9/
LA  - en
ID  - JSFU_2023_16_4_a9
ER  - 
%0 Journal Article
%A Ali Molkhasi
%T Strongly algebraically closed MV-algebras
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 519-527
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a9/
%G en
%F JSFU_2023_16_4_a9
Ali Molkhasi. Strongly algebraically closed MV-algebras. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 4, pp. 519-527. http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a9/

[1] S.Bonzio, I.Chajda, A.Ledda, “Representing quantum structures as near semirings”, Logic Journal of IGPL, 24 (2016), 1–24 | DOI | MR

[2] B.Banaschewski, E.Nelson, “Equational compactness in equational classes of algebras”, Algebra Universalis, 2 (1972), 152–165 | DOI | MR | Zbl

[3] H.Brandt, “Uber eine Verallgemeinerung der Gruppen-begriffes”, Math. Ann., 96 (1926), 360–366 | DOI | MR

[4] L.P.Belluce, A.Di Nola, S.Sessa, “The prime spectrum of an MV-algebra”, Math. Log. Qart., 40 (1994), 331–346 | DOI | MR | Zbl

[5] G.Czedli, A.Molkhasi, “Absolute retracts for finite distributive lattices and slim semimodular lattices”, Order, 2022 | MR | Zbl

[6] C.C.Chang, “Algebraic analysis of many valued logics”, Trans. Amer. Math. Soc., 88 (1958), 467–490 | DOI | MR | Zbl

[7] R.Cignoli, D.Mundici, “Stone duality for Dedekind $s$-complete $\ell$-groups with orderunit”, J. of Algebra, 302 (2006), 848–861 | DOI | MR | Zbl

[8] A.Di Nola, B.Gerla, “Algebras of Łukasiewicz's logic and their semiring reducts”, Idempotent mathematics and mathematical physics, Contemp. Math., 377, Amer. Math. Soc., Providence, RI, 2005, 131–144 | DOI | MR | Zbl

[9] A.Di Nola, G.Georgescu, A.Iorgulescu, “Pseudo-BL algebras: Part II”, Mult. Val. Logic, 8 (2002), 717–750 | MR | Zbl

[10] A.Di Nola, A.R.Ferraioli, G.Lenzi, “Algebraically closed MV-algebras and their sheaf representation”, Annals of Pure and Applied Logic, 164 (2013), 349–355 | DOI | MR | Zbl

[11] B.Davey, “Sheaf spaces and sheaves of universal algebras”, Math. Z., 134:4 (1973), 275–290 | DOI | MR | Zbl

[12] P.Hajek, Metamathematics of fuzzy logic, Trends in Logic, Studia Logica Library, Kluwer, Dordrecht, 1998 | MR | Zbl

[13] B.Gerla, “Rational Łukasiewicz logic and DMV-algebras”, Neural Netw. World, 6 (2001), 579–594

[14] K.H.Kim Y.H.Yon, “Dual BCK-algebra and MV-algebra, On algebras with a generalized implication”, Sci. Math. Jpn., 2007, 393–399 | MR

[15] F.Lacava, “Sulle classi delle $\ell$-algebre e degli $\ell$-gruppi abeliani algebricamente chiusi”, Boll. Un. Mat. Ital. B, 1:7 (1987), 703–712 | MR | Zbl

[16] F.Lacava, “Algebra di ${\L}$ukasiewicz quasi-locali”, Boll. Un. Mat. Ital. 1-B, 1997, no. 7, 961–972 | MR | Zbl

[17] A.Molkhasi, “On some strongly algebraically closed semirings”, Journal of Intelligent and Fuzzy Systems, 36:6 (2019), 6393–6400 | DOI

[18] A.Molkhasi, K.P.Shum, “Strongly algebraically closed orthomodular near semirings”, Rend. Circ. Mat. Palermo, II, 69 (2020), 803–812 | DOI | MR | Zbl

[19] S.Motamed, L.Torkzadeh, “A new class of BL-algebras”, Soft Comput., 21 (2017), 686–693 | DOI

[20] A.Molkhasi, “On strongly algebraically closed lattices”, J. Sib. Fed. Univ. Math. Phys., 9:2 (2016), 202–208 | DOI | MR

[21] P.Ouwehand, H.Rose, “Small congruence distributive varieties: retracts, injectives, equational compactness and amalgamation”, Periodica Math. Hung., 33 (1996), 207–228 | DOI | MR | Zbl

[22] P.Ptak, S.Pulmannova, Orthomodular structures as quantum logics, Kluwer Academic Publishers, 1991 | MR | Zbl

[23] J.Schmid, “Algebraically and existentially closed distributive lattices”, Zeitschr Math. Logik U. G. M., 25 (1979), 525–530 | DOI | MR | Zbl

[24] E.Turunen, “RS-BL-algebras are MV-algebras”, Iranian Journal of Fuzzy System, 6 (2016), 153–154 | DOI | MR | Zbl

[25] T.Vetterlein, “Boolean algebras with an automorphism group: a framework for Łukasiewicz logic”, Soft Comput., 10 (2006), 995–1000 | DOI | MR | Zbl

[26] B.Weglorz, “Equationally compact algebras, I”, Fund. Math., 59 (1966), 289–298 | DOI | MR | Zbl

[27] A.Walendziak, “On commutative BE-algebras”, Scientiae Mathematicae Japonicae Online, 2008, 585–588 | MR