On a note on Ap\'ery-like series with an application
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 4, pp. 498-505.

Voir la notice de l'article provenant de la source Math-Net.Ru

The goal of this note is to use a hypergeometric series strategy to build many Apéry-like series. As an application, we obtain several results due to Sherman.
Keywords: Apéry-like series, factorials, hypergeometric function, summation formulas, Gauss summation theorem, contiguous results, combinatorial sums.
Mots-clés : binomial coefficients
@article{JSFU_2023_16_4_a7,
     author = {Prathima Jayarama and Arjun Kumar Rathie},
     title = {On a note on {Ap\'ery-like} series with an application},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {498--505},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a7/}
}
TY  - JOUR
AU  - Prathima Jayarama
AU  - Arjun Kumar Rathie
TI  - On a note on Ap\'ery-like series with an application
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2023
SP  - 498
EP  - 505
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a7/
LA  - en
ID  - JSFU_2023_16_4_a7
ER  - 
%0 Journal Article
%A Prathima Jayarama
%A Arjun Kumar Rathie
%T On a note on Ap\'ery-like series with an application
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 498-505
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a7/
%G en
%F JSFU_2023_16_4_a7
Prathima Jayarama; Arjun Kumar Rathie. On a note on Ap\'ery-like series with an application. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 4, pp. 498-505. http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a7/

[1] R.Apéry, “Irrationalité de $\zeta(2)$ et $\zeta(3)$”, Journees arithmétiques de Luminy, Astérique, 61, 1979, 11–13 | MR | Zbl

[2] B.C.Berndt, P.T.Joshi, Ramanujan's Second Notebook, Chapter 9, Contemporary Mathematics, 23, American Mathematical Society, Rhode Island, 1983 | DOI | MR | Zbl

[3] J.Borwein, D.Broadhurst, J.Kamnitzer, Central binomial sums and multiple Claussen values (with connections to Zeta values), 1970

[4] R.L.Graham, D.E.Knuth, O.Patashnik, Concrete Mathematics, Second Edition, Addison-Wesley Publishing Company Inc., 1994, 262–263 | MR

[5] Y.S.Kim, M.A.Rakha, A.K.Rathie, “Extensions of certain classical summation theorems for the series $_{2} F_{1}$, $_{3} F_{2}$ and $_{4} F_{3}$ with applications in Ramanujan's summations”, Int. J. Math. Math. Sci., 2010 (2010), 309503 | MR | Zbl

[6] J.L.Lavoie, F.Grondin, A.K.Rathie, “Generalizations of Watson's theorem on the sum of a $_{3}F_{2}$”, Indian J. Math., 34:1 (1992), 23–32 | MR | Zbl

[7] J.L.Lavoie, F.Grondin, A.K. Rathie, K.Arora, “Generalizations of Dixon's theorem on the sum of a $_{3}F_{2}$”, Math. Comp., 62 (1994), 267–276 | MR | Zbl

[8] J.L.Lavoie, F.Grondin, A.K.Rathie, “Generalizations of Whipple's theorem on the sum of a $_{3}F_{2}$”, J. Comput. Appl. Math., 72 (1996), 293–300 | DOI | MR | Zbl

[9] D.H.Lehmer, “Interesting series involving the central binomial coefficient”, Amer. Math. Mon., 89:7 (1985), 449–457 | DOI | MR

[10] D.Leschiner, “Some new identities for $\zeta(k)$”, J. Number Theory, 13 (1981), 355–362 | DOI | MR

[11] A. van der Poorten, “Some wonderful formulae$\dots$ footnotes to Apéry's proof of the irrationality of $\zeta(3)$”, Sem. Delange-Pisot-Poitou, 20:2 (1978-1979), 1–7 | MR

[12] E.D.Rainville, Special Functions, The Macmillan Company, New York, 1960 | MR | Zbl

[13] M.A.Rakha, A.K.Rathie, “Generalizations of classical summation theorems for the series $_{2} F_{1}$ and $_{3} F_{2}$ with applications”, Integral Transforms Spec. Funct., 22:11 (2011), 823–840 | DOI | MR | Zbl

[14] L.J.Slater, Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, UK, 1966 | MR | Zbl

[15] T.Sherman, Summations of Glaisher and Apéry-like numbers, 2000 http://math.arizona.edu/ura/001/sherman.travis/series.pdf

[16] I.J.Zucker, “On the series $ \sum\limits_{k=1}^{\infty}\binom{2k}{k}^{-1}k^{-n}$ and related sums”, J. Number Theory, 20 (1985), 92–102 | DOI | MR | Zbl