Creeping three-dimensional convective motion in a layer with velocity field of a special type
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 4, pp. 441-456.

Voir la notice de l'article provenant de la source Math-Net.Ru

Problem of three-dimensional motion of a heat-conducting fluid in a channel with solid parallel walls is considered. Given temperature distribution is maintained on solid walls. The liquid temperature depends quadratically on the horizontal coordinates, and the velocity field has a special form. The resulting initial-boundary value problem for the Oberbeck–Boussinesq model is inverse and reduced to a system of five integro-differential equations. For small Reynolds numbers (creeping motion), the resulting system becomes linear. A stationary solution has been found for this system, and a priori estimates have been obtained. On the basis of these estimates, sufficient conditions for exponential convergence of a smooth non-stationary solution to a stationary solution have been established. The solution of the inverse problem has been found in the form of quadratures for the Laplace images under weaker conditions for the temperature regime on the walls of the layer. Behaviour of the velocity field for a specific liquid medium have been presented. The results were obtained with the use of numerical inversion of the Laplace transform.
Keywords: three-dimensional motion, inverse problem, a priori estimates, stability
Mots-clés : Oberbec–Boussinesq model, Laplace transform.
@article{JSFU_2023_16_4_a3,
     author = {Andrei A. Azanov},
     title = {Creeping three-dimensional convective motion in a layer with velocity field of a special type},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {441--456},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a3/}
}
TY  - JOUR
AU  - Andrei A. Azanov
TI  - Creeping three-dimensional convective motion in a layer with velocity field of a special type
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2023
SP  - 441
EP  - 456
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a3/
LA  - en
ID  - JSFU_2023_16_4_a3
ER  - 
%0 Journal Article
%A Andrei A. Azanov
%T Creeping three-dimensional convective motion in a layer with velocity field of a special type
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 441-456
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a3/
%G en
%F JSFU_2023_16_4_a3
Andrei A. Azanov. Creeping three-dimensional convective motion in a layer with velocity field of a special type. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 4, pp. 441-456. http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a3/

[1] K.Hiemenz, “Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder”, Dinglers Poliytech, 326 (1911), 321–440

[2] F.Howann, “Der Einfluss grosser Zahigkeit bei der Stromung um den Zylinder und um die Kugel”, Zeitschrift für Angewandte Mathematik und Mechanik, 16 (1936), 153–164 | DOI

[3] L.Howarth, “The boundary layer in three-dimensional flow. Part II. The flow near a stagnation point”, Lond. Edinb. Dubl. Phil. Mag.: Series 7, 42:335 (1951), 1433–1440 | DOI | MR | Zbl

[4] A.Davey, “Boundary-layer flow at a saddle point of attachment”, J. Fluid Mech., 10:4 (1961), 593–610 | DOI | MR | Zbl

[5] C.Y.Wang, “Axisymmetric stagnation flow on a cylinder”, Q. Appl. Math., 32:2 (1974), 207–213 | DOI | Zbl

[6] R.S.R.Gorla, “Unsteady laminar axisymmetric stagnation flow over a circular cylinder”, Develop. Mech., 9 (1977), 286–288

[7] V.B.Bekezhanova, V.K.Andreev, I.A.Shefer, “Influence of heat defect on the characteristics of a two-layer flow with the Hiemenz-type velocity”, Interfacial Phenomena and Heat Transfer, 7:4 (2019), 345–364 | DOI

[8] V.K.Andreev and etc., Mathematical Models of Convection, De Gruyter, Berlin–Boston, 2020 | MR | Zbl

[9] S.N.Aristov, D.V.Knyazev, A.D.Polyanin, “Exact solutions of the Navier-Stokes equations with linear dependence of the velocity components on two spatial variables”, Theoretical foundations of chemical technology, 43:5 (2009), 547–566 | DOI

[10] C.C.Lin, “Note on a class of exact solutions in magneto hydrodynamics”, Arch. Rational Mech. Anal., 1 (1958), 391–395 | DOI | MR | Zbl

[11] V.A.Ilyin, “On the solvability of mixed problems for hyperbolic and parabolic equations”, Russian Math. Surveys, 15:2 (1960), 201–209 | DOI | MR

[12] A.Friedman, Partial differential equations of parabolic type, Mir, 1968 (in Russian) | MR | Zbl

[13] M.A.Lavrentiev, Methods Of The Theory Of Functions Of A Complex Variable, 4-th ed., rec. and aug., Nauka, M., 1973 (in Russian) | MR

[14] G.Carslow, Thermal conductivity of solids, Nauka, M., 1964 (in Russian)

[15] F.R.Hoog, “An improved method for numerical inversion of Laplace transforms”, SIAM J. Sci. Stat. Comp., 1992, no. 3, 357–366 | MR