Analog of the Weierstrass theorem and the Blaschke product for $A(z)$-analytic functions
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 4, pp. 420-430.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider $A(z)$-analytic functions in the case when $A( z )$ is an antiholomorpic function. For $A( z )$-analytic functions analogs of the Weierstrass theorem and of the Blaschke theorem are proved.
Keywords: $A(z)$-analytic function, Cauchy's integral theorem, Weierstrass theorem, Jensen’s theorem, Blaschke theorem.
@article{JSFU_2023_16_4_a1,
     author = {Muhayyo Ne'matillayeva and Shohruh Khursanov},
     title = {Analog of the {Weierstrass} theorem and the {Blaschke} product for $A(z)$-analytic functions},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {420--430},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a1/}
}
TY  - JOUR
AU  - Muhayyo Ne'matillayeva
AU  - Shohruh Khursanov
TI  - Analog of the Weierstrass theorem and the Blaschke product for $A(z)$-analytic functions
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2023
SP  - 420
EP  - 430
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a1/
LA  - en
ID  - JSFU_2023_16_4_a1
ER  - 
%0 Journal Article
%A Muhayyo Ne'matillayeva
%A Shohruh Khursanov
%T Analog of the Weierstrass theorem and the Blaschke product for $A(z)$-analytic functions
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 420-430
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a1/
%G en
%F JSFU_2023_16_4_a1
Muhayyo Ne'matillayeva; Shohruh Khursanov. Analog of the Weierstrass theorem and the Blaschke product for $A(z)$-analytic functions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 4, pp. 420-430. http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a1/

[1] L.Ahlfors, Lectures on quasiconformal mappings, Mathematical studies, 10, Toronto–New York–London, 1966 | MR

[2] B.Bojarski, “Homeomorphic solutions of Beltrami systems”, Reports of the Academy of Sciences of the USSR, 102:4 (1955), 661–664 (in Russian) | MR | Zbl

[3] E.F.Collingwood, A.J.Lohwater, The theory of cluster sets, Cambridg Tracts in Mathematics and Mathematical physic, 56 | MR | Zbl

[4] N.M.Jabborov, T.U.Otaboev, “An analogue of the Cauchy integral formula for A-analytic functions”, Uzbek Mathematical Journal, 2:4 (2016), 50–59 | MR

[5] N.M.Jabborov, T.U.Otaboev, Sh.Ya.Khursanov, “Schwartz inequality and Schwartz formula for analytic functions”, Modern Mathematics. Fundamental Directions, 64, no. 4, 2018, 637–649 | DOI | MR

[6] S.Y.Khursanov, “Geometric properties of A-harmonic functions”, Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences, 3 (2020), 236–245

[7] P.Koosis, Introduction to ${{H}^{p}}$ Spaces, London Math Sosiety Lecture Note Series, 40, Cambidge University, 1960 | MR

[8] I.I.Privalov, Boundary properties of analytic functions, M., 1959 (in Russian) | MR

[9] A.Sadullaev, N.M.Jabborov, “On a class of A-analitic functions”, Journal of Siberian Federal University. Mathematics and Physics, 9:3 (2016), 374–383 | DOI | MR

[10] B.V.Shabat, Introduction to complex analysis, v. 1, Nauka, M., 1985 (in Russian) | MR

[11] J.K.Tishabaev, T.U.Otaboyev, Sh.Ya.Khursanov, “Residues and argument prinsple for A-analytic functions”, Journal of Mathematical Sciences, 245:3 (2020), 350–358 | DOI | Zbl

[12] E.C.Titchmarsh, The theory of functions, Second Edition, 1939 | MR

[13] I.N.Vekua, Generalized analytic functions, Nauka, M., 1988 (in Russian) | MR | Zbl