Analog of the Weierstrass theorem and the Blaschke product for $A(z)$-analytic functions
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 4, pp. 420-430

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider $A(z)$-analytic functions in the case when $A( z )$ is an antiholomorpic function. For $A( z )$-analytic functions analogs of the Weierstrass theorem and of the Blaschke theorem are proved.
Keywords: $A(z)$-analytic function, Cauchy's integral theorem, Weierstrass theorem, Jensen’s theorem, Blaschke theorem.
@article{JSFU_2023_16_4_a1,
     author = {Muhayyo Ne'matillayeva and Shohruh Khursanov},
     title = {Analog of the {Weierstrass} theorem and the {Blaschke} product for $A(z)$-analytic functions},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {420--430},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a1/}
}
TY  - JOUR
AU  - Muhayyo Ne'matillayeva
AU  - Shohruh Khursanov
TI  - Analog of the Weierstrass theorem and the Blaschke product for $A(z)$-analytic functions
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2023
SP  - 420
EP  - 430
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a1/
LA  - en
ID  - JSFU_2023_16_4_a1
ER  - 
%0 Journal Article
%A Muhayyo Ne'matillayeva
%A Shohruh Khursanov
%T Analog of the Weierstrass theorem and the Blaschke product for $A(z)$-analytic functions
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 420-430
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a1/
%G en
%F JSFU_2023_16_4_a1
Muhayyo Ne'matillayeva; Shohruh Khursanov. Analog of the Weierstrass theorem and the Blaschke product for $A(z)$-analytic functions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 4, pp. 420-430. http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a1/