Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2023_16_4_a1, author = {Muhayyo Ne'matillayeva and Shohruh Khursanov}, title = {Analog of the {Weierstrass} theorem and the {Blaschke} product for $A(z)$-analytic functions}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {420--430}, publisher = {mathdoc}, volume = {16}, number = {4}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a1/} }
TY - JOUR AU - Muhayyo Ne'matillayeva AU - Shohruh Khursanov TI - Analog of the Weierstrass theorem and the Blaschke product for $A(z)$-analytic functions JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2023 SP - 420 EP - 430 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a1/ LA - en ID - JSFU_2023_16_4_a1 ER -
%0 Journal Article %A Muhayyo Ne'matillayeva %A Shohruh Khursanov %T Analog of the Weierstrass theorem and the Blaschke product for $A(z)$-analytic functions %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2023 %P 420-430 %V 16 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a1/ %G en %F JSFU_2023_16_4_a1
Muhayyo Ne'matillayeva; Shohruh Khursanov. Analog of the Weierstrass theorem and the Blaschke product for $A(z)$-analytic functions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 4, pp. 420-430. http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a1/
[1] L.Ahlfors, Lectures on quasiconformal mappings, Mathematical studies, 10, Toronto–New York–London, 1966 | MR
[2] B.Bojarski, “Homeomorphic solutions of Beltrami systems”, Reports of the Academy of Sciences of the USSR, 102:4 (1955), 661–664 (in Russian) | MR | Zbl
[3] E.F.Collingwood, A.J.Lohwater, The theory of cluster sets, Cambridg Tracts in Mathematics and Mathematical physic, 56 | MR | Zbl
[4] N.M.Jabborov, T.U.Otaboev, “An analogue of the Cauchy integral formula for A-analytic functions”, Uzbek Mathematical Journal, 2:4 (2016), 50–59 | MR
[5] N.M.Jabborov, T.U.Otaboev, Sh.Ya.Khursanov, “Schwartz inequality and Schwartz formula for analytic functions”, Modern Mathematics. Fundamental Directions, 64, no. 4, 2018, 637–649 | DOI | MR
[6] S.Y.Khursanov, “Geometric properties of A-harmonic functions”, Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences, 3 (2020), 236–245
[7] P.Koosis, Introduction to ${{H}^{p}}$ Spaces, London Math Sosiety Lecture Note Series, 40, Cambidge University, 1960 | MR
[8] I.I.Privalov, Boundary properties of analytic functions, M., 1959 (in Russian) | MR
[9] A.Sadullaev, N.M.Jabborov, “On a class of A-analitic functions”, Journal of Siberian Federal University. Mathematics and Physics, 9:3 (2016), 374–383 | DOI | MR
[10] B.V.Shabat, Introduction to complex analysis, v. 1, Nauka, M., 1985 (in Russian) | MR
[11] J.K.Tishabaev, T.U.Otaboyev, Sh.Ya.Khursanov, “Residues and argument prinsple for A-analytic functions”, Journal of Mathematical Sciences, 245:3 (2020), 350–358 | DOI | Zbl
[12] E.C.Titchmarsh, The theory of functions, Second Edition, 1939 | MR
[13] I.N.Vekua, Generalized analytic functions, Nauka, M., 1988 (in Russian) | MR | Zbl