On generation of the groups $GL_n(\mathbb{Z})$ and $PGL_n(\mathbb{Z})$ by three involutions, two of which commute
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 4, pp. 413-419
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that the general linear group $GL_n(\mathbb{Z})$ (its projective image $PGL_n(\mathbb{Z})$ respectively) over the ring of integers $\mathbb{Z}$ is generated by three involutions, two of which commute, if and only if $n\geqslant 5$ (if $n=2$ and $n \geqslant 5$ respectively).
Keywords:
general linear group, ring of integers, generating triples of involutions.
@article{JSFU_2023_16_4_a0,
author = {Irina A. Markovskaya and Yakov N. Nuzhin},
title = {On generation of the groups $GL_n(\mathbb{Z})$ and $PGL_n(\mathbb{Z})$ by three involutions, two of which commute},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {413--419},
publisher = {mathdoc},
volume = {16},
number = {4},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a0/}
}
TY - JOUR
AU - Irina A. Markovskaya
AU - Yakov N. Nuzhin
TI - On generation of the groups $GL_n(\mathbb{Z})$ and $PGL_n(\mathbb{Z})$ by three involutions, two of which commute
JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY - 2023
SP - 413
EP - 419
VL - 16
IS - 4
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a0/
LA - en
ID - JSFU_2023_16_4_a0
ER -
%0 Journal Article
%A Irina A. Markovskaya
%A Yakov N. Nuzhin
%T On generation of the groups $GL_n(\mathbb{Z})$ and $PGL_n(\mathbb{Z})$ by three involutions, two of which commute
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 413-419
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a0/
%G en
%F JSFU_2023_16_4_a0
Irina A. Markovskaya; Yakov N. Nuzhin. On generation of the groups $GL_n(\mathbb{Z})$ and $PGL_n(\mathbb{Z})$ by three involutions, two of which commute. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 4, pp. 413-419. http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a0/