On generation of the groups $GL_n(\mathbb{Z})$ and $PGL_n(\mathbb{Z})$ by three involutions, two of which commute
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 4, pp. 413-419.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the general linear group $GL_n(\mathbb{Z})$ (its projective image $PGL_n(\mathbb{Z})$ respectively) over the ring of integers $\mathbb{Z}$ is generated by three involutions, two of which commute, if and only if $n\geqslant 5$ (if $n=2$ and $n \geqslant 5$ respectively).
Keywords: general linear group, ring of integers, generating triples of involutions.
@article{JSFU_2023_16_4_a0,
     author = {Irina A. Markovskaya and Yakov N. Nuzhin},
     title = {On generation of the groups $GL_n(\mathbb{Z})$ and $PGL_n(\mathbb{Z})$ by three involutions, two of which commute},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {413--419},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a0/}
}
TY  - JOUR
AU  - Irina A. Markovskaya
AU  - Yakov N. Nuzhin
TI  - On generation of the groups $GL_n(\mathbb{Z})$ and $PGL_n(\mathbb{Z})$ by three involutions, two of which commute
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2023
SP  - 413
EP  - 419
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a0/
LA  - en
ID  - JSFU_2023_16_4_a0
ER  - 
%0 Journal Article
%A Irina A. Markovskaya
%A Yakov N. Nuzhin
%T On generation of the groups $GL_n(\mathbb{Z})$ and $PGL_n(\mathbb{Z})$ by three involutions, two of which commute
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 413-419
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a0/
%G en
%F JSFU_2023_16_4_a0
Irina A. Markovskaya; Yakov N. Nuzhin. On generation of the groups $GL_n(\mathbb{Z})$ and $PGL_n(\mathbb{Z})$ by three involutions, two of which commute. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 4, pp. 413-419. http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a0/

[1] R.I.Gvozdev, Ya.N.Nuzhin, T.B.Shaipova, “On generation of groups $SL_n(\mathbb{Z}+i\mathbb{Z})$ and $PSL_n(\mathbb{Z}+i\mathbb{Z})$ by three involutions, two of which commute”, Proceedings of ISU. Series Mathematics, 40 (2022), 49–62 (in Russian) | DOI | MR | Zbl

[2] Ya.N.Nuzhin, “On generation of the group $PSL_n(Z)$ by three involutions, two of which commute”, Vladikavkaz Math. J., 10:1 (2008), 68–74 (in Russian) | MR | Zbl

[3] Ya.N.Nuzhin, I.A.Timofeenko, “Generating triplets of involutions of linear groups of dimension 2 over the ring of integers”, Vladikavkaz Math. J., 11:4 (2009), 59–62 (in Russian) | MR | Zbl

[4] Ya.N.Nuzhin, “Generating triples of involutions of Chevalley groups over a finite field of characteristic 2”, Algebra and Logic, 29:2 (1990), 192–206 | DOI | MR | Zbl

[5] M.C.Tamburini, P.Zucca, “Generation of Certain Matrix Groups by Three Involutions, Two of Which Commute”, J. of Algebra, 195 (1997), 650–661 | DOI | MR | Zbl

[6] R.Steinberg, Lectures on Chevalley groups, Mir, M., 1975 (in Russian) | MR | Zbl

[7] D.A.Suprunenko, Matrix groups, Nauka, M., 1972 (in Russian) | MR | Zbl