On the calculation of the Poiseuille number in the annular region for non-isothermal gas flow
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 3, pp. 330-339.

Voir la notice de l'article provenant de la source Math-Net.Ru

A slow longitudinal non-isothermal gas flow in the annular region caused by small pressure and temperature drops across a long micro-channel is considered in the paper. A method for calculating the values of the Poiseuille number in the transitional gas flow regime is proposed. The method is based on the solution of the model linearised Bhatnagar-Gross-Krook (BGK) kinetic equation using Chebyshev polynomials. The calculated values are compared with similar results obtained using analytical solutions of the Navier–Stokes equations with no-slip and slip boundary conditions. The effect of the accommodation coefficient of the tangential momentum of the gas molecules and the gas rarefaction parameter on the change in the Poiseuille number is analysed for small ratios of the temperature and pressure gradients of the gas in the channel.
Keywords: Chebyshev polynomials of the first kind, collocation method, nonisothermal gas flow in a channel, kinetic equation, models of boundary conditions.
Mots-clés : Poiseuille number
@article{JSFU_2023_16_3_a4,
     author = {Oksana V. Germider and Vasily N. Popov},
     title = {On the calculation of the {Poiseuille} number in the annular region for non-isothermal gas flow},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {330--339},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_3_a4/}
}
TY  - JOUR
AU  - Oksana V. Germider
AU  - Vasily N. Popov
TI  - On the calculation of the Poiseuille number in the annular region for non-isothermal gas flow
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2023
SP  - 330
EP  - 339
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2023_16_3_a4/
LA  - en
ID  - JSFU_2023_16_3_a4
ER  - 
%0 Journal Article
%A Oksana V. Germider
%A Vasily N. Popov
%T On the calculation of the Poiseuille number in the annular region for non-isothermal gas flow
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 330-339
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_3_a4/
%G en
%F JSFU_2023_16_3_a4
Oksana V. Germider; Vasily N. Popov. On the calculation of the Poiseuille number in the annular region for non-isothermal gas flow. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 3, pp. 330-339. http://geodesic.mathdoc.fr/item/JSFU_2023_16_3_a4/

[1] A.Lobasov, A.Minakov, V.Rudyak, “Flow modes of non-newtonian fluids with power-law rheology in a t-shaped micromixer”, Theoretical Foundations of Chemical Engineering, 52 (2018), 393–403 | DOI

[2] A.Basaran, A.Yurddas, “Thermal modeling and designing of microchannel condenser for refrigeration applications operating with isobutane (R600a)”, Applied Thermal Engineering, 198 (2021), 117446 | DOI

[3] M.Khandelwal, N.Singh, “Stability of non-isothermal annular Poiseuille flow with viscosity stratification”, International Communications in Heat and Mass Transfer, 138 (2022), 106359 | DOI

[4] V.Ambrus, F.Sharipov, V.Sofonea, “Comparison of the Shakhov and ellipsoidal models for the Boltzmann equation and DSMC for ab initio-based particle interactions”, Computers and Fluids, 211 (2020), 104637 | DOI | MR | Zbl

[5] K.Dutkowski, “Experimental investigations of Poiseuille number laminar flow of water and air in minichannels”, International Journal of Heat and Mass Transfer, 51:25-26 (2008), 5983–5990 | DOI

[6] C.Liu, J.Yang, Y.Ni, “A multiplicative decomposition of Poiseuille number on rarefaction and roughness by lattice Boltzmann simulation”, Computers and Mathematics with Applications, 61 (2011), 3528–3536 | DOI | MR | Zbl

[7] G.Breyiannis, S.Varoutis, D.Valougeorgis, “Rarefied gas flow in concentric annular tube: Estimation of the Poiseuille number and the exact hydraulic diameter”, European Journal of Mechanics B/Fluids, 27 (2008), 609–622 | DOI | Zbl

[8] P.Bhatnagar, E.Gross, M.Krook, “ A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems”, Phys. Rev., 94:3 (1954), 511–525 | DOI | Zbl

[9] O.Germider, V.Popov, “ Estimate of the Effect of Rarefaction on the Poiseuille Number in a Long Annular Channel under Partial Accommodation of Gas Molecules”, Fluid Dynamics, 57:5 (2022), 663–671 | DOI | MR | Zbl

[10] J.Mason, D.Handscomb, Chebyshev polynomials, CRC Press, Florida, 2003 | MR | Zbl

[11] S.Kandlikar, S.Garimella, S.Li, M.King, Heat Transfer and Fluid Flow in Minichannels and Microchannels, Elsevier Ltd., Oxford, 2006

[12] F.Sharipov, V.Seleznev, Rarefied gas motion in channels and microchannels, UrO RAN, Yekaterinburg, 2008 (in Russian)

[13] S.K.Loyalka, “Kinetic theory of thermal transpiration and mechanocaloric effect. I”, J. Chem. Phys., 55:9 (1971), 4497–4503 | DOI

[14] C.Clenshaw, A.Curtis, “A method for numerical integration on an automatic computer”, Num. Math., 2 (1960), 197–205 | DOI | MR | Zbl

[15] O.Germider, V.Popov, “Application of Chebyshev polynomials to calculate rarefied gas flows in channels with cylindrical geometry (Primeneniye polinomov Chebysheva dlya vychisleniya potokov razrezhennogo gaza v kanalakh s tsilindricheskoy geometriyey)”, Siberian electronic mathematical reports, 16 (2019), 1947–1959 (in Russian) | DOI | MR | Zbl

[16] L.Landau, E.Lifshitz, Fluid Mechanics, Pergamon, New York, 1989 | MR

[17] S.Loyalka, “Thermal Creep Slip with Arbitrary Accommodation at the Surface”, Physics of Fluids, 14:8 (1971), 1656–1661 | DOI

[18] A.Latyshev, A.Yushkanov, E.Korneeva, “Thermal sliding of a rarefied gas along a flat surface with mirror-diffusion boundary conditions”, Bulletin of Moscow State Regional University. Series: Physics and Mathematics, 1 (2016), 60–73 (in Russian) | DOI