Power comparisons of EDF goodness-of-fit tests
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 3, pp. 308-317.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, the power of common goodness-of-fit (GoF) statistics is based on the empirical distribution function (EDF) where the critical values must be determined by simulation. The statistical power of Kolmogorov–Smirnov $ D_{n} $, Cramér-von Mises $ W^{2} $, Watson $ U^{2} $, Liao and Shimokawa $ L_{n} $, and Anderson–Darling $ A^{2} $ statistics were investigated by the sample size, the significance level, and the alternative distributions, for the generalized Rayleigh model (GR). The exponential, the Weibull, the inverse Weibull, the exponentiated Weibull, and the exponentiated exponential distributions were considered among the most frequent alternative distributions.
Keywords: generalized Rayleigh distribution, Kolmogorov–Smirnov test, the Cramér-von Mises test (C-VM), Anderson–Darling test (A-D), Watson test (W), Liao and Shimokawa test (LS).
@article{JSFU_2023_16_3_a2,
     author = {Djahida Tilbi},
     title = {Power comparisons of {EDF} goodness-of-fit tests},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {308--317},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_3_a2/}
}
TY  - JOUR
AU  - Djahida Tilbi
TI  - Power comparisons of EDF goodness-of-fit tests
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2023
SP  - 308
EP  - 317
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2023_16_3_a2/
LA  - en
ID  - JSFU_2023_16_3_a2
ER  - 
%0 Journal Article
%A Djahida Tilbi
%T Power comparisons of EDF goodness-of-fit tests
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 308-317
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_3_a2/
%G en
%F JSFU_2023_16_3_a2
Djahida Tilbi. Power comparisons of EDF goodness-of-fit tests. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 3, pp. 308-317. http://geodesic.mathdoc.fr/item/JSFU_2023_16_3_a2/

[1] A.M.Abd-Elfattah, H.A.Fergany, A.M.Omim, “Goodness-Of- Fit test for the generalized Fr-echet distribution”, Australian Journal of Basic and Applied Science, 4:2 (2010), 286–301

[2] A.Al-Khedhairi, A.Sarhan, L.Tadj, “Estimation of the generalized Rayleigh distribution parameter”, International journal of reliability and applications, 12 (2007), 199–210

[3] B.Al-Zahrani, “Goodness-of-Fit for the Topp-Leone distribution with unknown parameters”, Applied Mathematical Sciences, 6:128 (2012), 6355–63 | MR

[4] T.W.Anderson, D.A.Darling, “A test of goodness of fit”, Journal of the American Statistical Association, 49:268 (1954), 765–9 | DOI | MR

[5] D.A.Darling, “The Kolmogorov-Smirnov, Cramer-von Mises tests”, The Annals of Mathematical Statistics, 28:4 (1957), 823–38 | DOI | MR

[6] D.Kundu, R.D.Gupta, “A convenient way of generating gamma random variables using generalized exponential distribution”, Comput. Statist. Data Anal., 51:5 (2007), 2796–2802 | DOI | MR | Zbl

[7] D.Tilbi, N.Seddik-Ameur, “Chi-squared goodness-of-fit tests for the generalized Rayleigh distribution”, Journal of Statistical Theory and Practice, 11:4 (2017), 594–603 | DOI | MR | Zbl

[8] J.W.Evans, R.A.Johnson, D.W.Green, Two- and three-parameter Weibull goodness-of-fit tests, U.S. Department of agriculture Forest Service, Forest Products Laboratory, Madison, 1989

[9] A.S.Hassan, “Goodness-of-fit for the generalized exponential distribution”, Interstat Electronic Journal, 2005, 1–15 | MR

[10] A.N.Kolmogorov, “On the empirical determination of a distribution law (Sulla determinazione empirica di una legge di distribuzione)”, Giornale dell'Istituto Italiano degli Attuari, 4:1 (1933), 83–91 | Zbl

[11] D.Kundu, M.Z.Raqab, “Generalized Rayleigh distribution : different methods of estimation”, Computational Statistics and Data Analysis, 49 (2005), 187–200 | DOI | MR | Zbl

[12] B.Y.Lemeshko, S.B.Lemeshko, “Models of statistic distributions of nonparametric goodness-of-fit tests in composite hypotheses testing for double exponential law cases”, Communications in Statistics – Theory and Methods, 40:16 (2011), 2879-2892 | DOI | MR | Zbl

[13] B.Y.Lemeshko, S.B.Lemeshko, “Construction of statistic distribution models for nonparametric goodness-of-fit tests in testing composite hypotheses. The computer approach”, Quality Technology Quantitative Management, 8:4 (2011), 359-373 | DOI | MR

[14] M.Liao, T.Shimokawa, “A new goodness-of-fit test for Type-I extreme-value and 2-parameter Weibull distributions with estimated parameters”, Journal of Statistical Computation and Simulation, 64:1 (1999), 23–48 | DOI | MR | Zbl

[15] M.Liao, T.Shimokawa, “Goodness-of-fit test extreme-value and 2-parameter Weibull distributions”, IEEE Transactions on Reliability, 48:1 (1999), 79–86 | DOI

[16] G.S.Mudholkar, D.K.Srivastava, “Exponentiated Weibull family for analyzing bathtub failure-rate data”, IEEE Transactions on Reliability, 42 (1993), 299–302 | DOI | Zbl

[17] M.Z.Raqab, M.T.Madi, “Generalized Rayleigh Distribution”, International Encyclopedia of Statistical Science, 2011, 599–603 | DOI

[18] G.S.Mudholkar, D.K.Srivastava, C.T.Lin, “Some p-variate adaptations of the Shapiro-Wilk test of normality”, Communications in Statistics-Theory and Methods, 24 (1995), 953–85 | DOI | MR

[19] P.Fathipour, A.Abolhasani, H.J.Khamnei, “Estimating R=P(Y) in the Generalized Rayleigh Distribution with Different Scale Parameters”, Applied Mathematical Sciences, 7 (2013), 87–9 | DOI | MR

[20] G.S.Rao, “Estimation of Reliability in Multicomponent Stress-Strength Based on Generalized Rayleigh Distribution”, Journal of Modern Applied Statistical Methods, 13:1 (2014), 24 http://digitalcommons.wayne.edu/jmasm/vol13/iss1/24 | DOI

[21] M.A.Stephens, “EDF statistics for goodness of fit and some comparisons”, Journal of the American Statistica Association, 69:347 (1974), 730–7 | DOI | MR

[22] M.A.Stephens, “Goodness-of-fit for the extreme value distribution”, Biometrik, 64:3 (1977), 583–588 | DOI | MR | Zbl

[23] M.A.Stephens, EDF tests of fit for the logistic distribution, Technical report No 275, Department of statistics, Stanford university, California, USA, 1979

[24] J.G.Surles, W.J.Padgett, “Inference for reliability and stress-strength for a scaled Burr type X distribution”, Lifetime Data Analysis, 7 (2001), 187–200 | DOI | MR | Zbl

[25] G.S.Watson, “Goodness-of-fit tests on a circle I”, Biometrika, 48:1–2 (1961), 109–114 | DOI | MR | Zbl

[26] G.S.Watson, “Goodness-of-fit tests on a circle. II”, Biometrika, 49:1–2 (1962), 57–63 | DOI | MR | Zbl