Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2023_16_3_a2, author = {Djahida Tilbi}, title = {Power comparisons of {EDF} goodness-of-fit tests}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {308--317}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_3_a2/} }
Djahida Tilbi. Power comparisons of EDF goodness-of-fit tests. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 3, pp. 308-317. http://geodesic.mathdoc.fr/item/JSFU_2023_16_3_a2/
[1] A.M.Abd-Elfattah, H.A.Fergany, A.M.Omim, “Goodness-Of- Fit test for the generalized Fr-echet distribution”, Australian Journal of Basic and Applied Science, 4:2 (2010), 286–301
[2] A.Al-Khedhairi, A.Sarhan, L.Tadj, “Estimation of the generalized Rayleigh distribution parameter”, International journal of reliability and applications, 12 (2007), 199–210
[3] B.Al-Zahrani, “Goodness-of-Fit for the Topp-Leone distribution with unknown parameters”, Applied Mathematical Sciences, 6:128 (2012), 6355–63 | MR
[4] T.W.Anderson, D.A.Darling, “A test of goodness of fit”, Journal of the American Statistical Association, 49:268 (1954), 765–9 | DOI | MR
[5] D.A.Darling, “The Kolmogorov-Smirnov, Cramer-von Mises tests”, The Annals of Mathematical Statistics, 28:4 (1957), 823–38 | DOI | MR
[6] D.Kundu, R.D.Gupta, “A convenient way of generating gamma random variables using generalized exponential distribution”, Comput. Statist. Data Anal., 51:5 (2007), 2796–2802 | DOI | MR | Zbl
[7] D.Tilbi, N.Seddik-Ameur, “Chi-squared goodness-of-fit tests for the generalized Rayleigh distribution”, Journal of Statistical Theory and Practice, 11:4 (2017), 594–603 | DOI | MR | Zbl
[8] J.W.Evans, R.A.Johnson, D.W.Green, Two- and three-parameter Weibull goodness-of-fit tests, U.S. Department of agriculture Forest Service, Forest Products Laboratory, Madison, 1989
[9] A.S.Hassan, “Goodness-of-fit for the generalized exponential distribution”, Interstat Electronic Journal, 2005, 1–15 | MR
[10] A.N.Kolmogorov, “On the empirical determination of a distribution law (Sulla determinazione empirica di una legge di distribuzione)”, Giornale dell'Istituto Italiano degli Attuari, 4:1 (1933), 83–91 | Zbl
[11] D.Kundu, M.Z.Raqab, “Generalized Rayleigh distribution : different methods of estimation”, Computational Statistics and Data Analysis, 49 (2005), 187–200 | DOI | MR | Zbl
[12] B.Y.Lemeshko, S.B.Lemeshko, “Models of statistic distributions of nonparametric goodness-of-fit tests in composite hypotheses testing for double exponential law cases”, Communications in Statistics – Theory and Methods, 40:16 (2011), 2879-2892 | DOI | MR | Zbl
[13] B.Y.Lemeshko, S.B.Lemeshko, “Construction of statistic distribution models for nonparametric goodness-of-fit tests in testing composite hypotheses. The computer approach”, Quality Technology Quantitative Management, 8:4 (2011), 359-373 | DOI | MR
[14] M.Liao, T.Shimokawa, “A new goodness-of-fit test for Type-I extreme-value and 2-parameter Weibull distributions with estimated parameters”, Journal of Statistical Computation and Simulation, 64:1 (1999), 23–48 | DOI | MR | Zbl
[15] M.Liao, T.Shimokawa, “Goodness-of-fit test extreme-value and 2-parameter Weibull distributions”, IEEE Transactions on Reliability, 48:1 (1999), 79–86 | DOI
[16] G.S.Mudholkar, D.K.Srivastava, “Exponentiated Weibull family for analyzing bathtub failure-rate data”, IEEE Transactions on Reliability, 42 (1993), 299–302 | DOI | Zbl
[17] M.Z.Raqab, M.T.Madi, “Generalized Rayleigh Distribution”, International Encyclopedia of Statistical Science, 2011, 599–603 | DOI
[18] G.S.Mudholkar, D.K.Srivastava, C.T.Lin, “Some p-variate adaptations of the Shapiro-Wilk test of normality”, Communications in Statistics-Theory and Methods, 24 (1995), 953–85 | DOI | MR
[19] P.Fathipour, A.Abolhasani, H.J.Khamnei, “Estimating R=P(Y) in the Generalized Rayleigh Distribution with Different Scale Parameters”, Applied Mathematical Sciences, 7 (2013), 87–9 | DOI | MR
[20] G.S.Rao, “Estimation of Reliability in Multicomponent Stress-Strength Based on Generalized Rayleigh Distribution”, Journal of Modern Applied Statistical Methods, 13:1 (2014), 24 http://digitalcommons.wayne.edu/jmasm/vol13/iss1/24 | DOI
[21] M.A.Stephens, “EDF statistics for goodness of fit and some comparisons”, Journal of the American Statistica Association, 69:347 (1974), 730–7 | DOI | MR
[22] M.A.Stephens, “Goodness-of-fit for the extreme value distribution”, Biometrik, 64:3 (1977), 583–588 | DOI | MR | Zbl
[23] M.A.Stephens, EDF tests of fit for the logistic distribution, Technical report No 275, Department of statistics, Stanford university, California, USA, 1979
[24] J.G.Surles, W.J.Padgett, “Inference for reliability and stress-strength for a scaled Burr type X distribution”, Lifetime Data Analysis, 7 (2001), 187–200 | DOI | MR | Zbl
[25] G.S.Watson, “Goodness-of-fit tests on a circle I”, Biometrika, 48:1–2 (1961), 109–114 | DOI | MR | Zbl
[26] G.S.Watson, “Goodness-of-fit tests on a circle. II”, Biometrika, 49:1–2 (1962), 57–63 | DOI | MR | Zbl