The Fredholm Navier--Stokes type equations for the de Rham complex over weighted H\"older spaces
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 3, pp. 283-299.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a family of initial problems for the Navie–Stokes type equations generated by the de Rham complex in ${\mathbb R}^n \times [0,T]$, $n\geqslant 2$, with a positive time $T$ over a scale weighted anisotropic Hölder spaces. As the weights control the order of zero at the infinity with respect to the space variables for vectors fields under the consideration, this actually leads to initial problems over a compact manifold with the singular conic point at the infinity. We prove that each problem from the family induces Fredholm open injective mappings on elements of the scales. At the step $1$ of the complex we may apply the results to the classical Navier–Stokes equations for incompressible viscous fluid.
Keywords: Navier-Stokes type equations, de Rham complex, Fredholm operator equations.
@article{JSFU_2023_16_3_a0,
     author = {Ksenija V. Gagelgans and Alexander A. Shlapunov},
     title = {The {Fredholm} {Navier--Stokes} type equations for the de {Rham} complex over weighted {H\"older} spaces},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {283--299},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_3_a0/}
}
TY  - JOUR
AU  - Ksenija V. Gagelgans
AU  - Alexander A. Shlapunov
TI  - The Fredholm Navier--Stokes type equations for the de Rham complex over weighted H\"older spaces
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2023
SP  - 283
EP  - 299
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2023_16_3_a0/
LA  - en
ID  - JSFU_2023_16_3_a0
ER  - 
%0 Journal Article
%A Ksenija V. Gagelgans
%A Alexander A. Shlapunov
%T The Fredholm Navier--Stokes type equations for the de Rham complex over weighted H\"older spaces
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 283-299
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_3_a0/
%G en
%F JSFU_2023_16_3_a0
Ksenija V. Gagelgans; Alexander A. Shlapunov. The Fredholm Navier--Stokes type equations for the de Rham complex over weighted H\"older spaces. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 3, pp. 283-299. http://geodesic.mathdoc.fr/item/JSFU_2023_16_3_a0/

[1] R.Temam, Navier–Stokes Equations. Theory and Numerical Analysis, North Holland Publ. Comp., Amsterdam, 1979 | MR | Zbl

[2] O.A.Ladyzhenskaya, Mathematical Problems of Incompressible Viscous Fluid, Nauka, M., 1970

[3] J. Leray, “Essai sur les mouvements plans d'un liquid visqueux que limitend des parois”, J. Math. Pures Appl., 9 (1934), 331–418 | MR

[4] J. Leray, “Sur le mouvement plans d'un liquid visqueux emplissant l'espace”, Acta Math., 63 (1934), 193–248 | DOI | MR

[5] A.N.Kolmogorov, “Equations of turbulent mouvement of incompressible fluid”, Izv. AN SSSR, Physics Series, 6:1 (1942), 56–58

[6] E. Hopf, “Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen”, Math. Nachr., 4 (1951), 213–231 | DOI | MR | Zbl

[7] J.L.Lions, Quelques méthodes de résolution des problèmes aux limites non linéare, Dunod/Gauthier-Villars, Paris, 1969 | MR

[8] S.Smale, “An infinite dimensional version of Sard's theorem”, Amer. J. Math., 87:4 (1965), 861–866 | DOI | MR | Zbl

[9] R.Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, 2 nd ed., SIAM, Philadelphia, 1995 | MR | Zbl

[10] A.Mera, A.A.Shlapunov, N.Tarkhanov, “Navier–Stokes Equations for Elliptic Complexes”, Journal of Siberian Federal University, Math. and Phys., 12:1 (2019), 3–27 | DOI | MR

[11] A.A.Shlapunov, N.Tarkhanov, “Inverse image of precompact sets and existence theorems for the Navier–Stokes equations in spatially periodic setting”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 32:2 (2022), 278–297 | DOI | MR | Zbl

[12] A.A.Shlapunov, N.Tarkhanov, “An open mapping theorem for the Navier–Stokes type equations associated with the de Rham complex over ${\mathbb R}^n$”, Siberian Electronic Math. Reports, 18:2 (2021), 1433–1466 | DOI | MR | Zbl

[13] A.Polkovnikov, “An open mapping theorem for nonlinear operator equations associated with elliptic complexes”, Applicable Analysis | DOI | MR

[14] P.Plecháč, Šverák, “Singular and regular solutions of a nonlinear parabolic system”, Nonlinearity, 16:6 (2003), 2083–2097 | DOI | MR | Zbl

[15] Ch.Fefferman, Exiestence and smoothness of the Navier-Stokes equation, Clay Mathematics Institute, Cambridge, MA, 2000, 5 pp. http://www.claymath.org/millennium-problems/navier-stokes-equation

[16] A.A.Shlapunov, N. Tarkhanov, “An open mapping theorem for the Navier-Stokes Equations”, Advances and Applications in Fluid Mechanics, 21:2 (2018), 127–246 | DOI

[17] T.Behrndt, “On the Cauchy problem for the heat equation on Riemannian manifolds with conical singularities”, The Quarterly Journal of Math., 64:4 (2011), 981–1007 | DOI | MR

[18] K.V.Sidorova (Gagelgans), A.A.Shlapunov, “On the Closure of Smooth Compactly Supported Functions in Weighted Hoölder Spaces”, Math. Notes, 105:4 (2019), 616–631 | MR | Zbl

[19] K.V. Gagelgans, “On the cohomologies of the de Rham complex over weighted isotropic and anisotropic Hölder spaces”, Complex Variables and Elliptic Equations | DOI | MR

[20] R. McOwen, “Behavior of the Laplacian on weighted Sobolev spaces”, Comm. Pure Appl. Math., 32 (1979), 783–795 | DOI | MR | Zbl

[21] G. De Rham, Variétés Différentiables, Hermann$\$C, Éditeurs, Paris, 1955 | MR

[22] K.V. Gagelgans, A.A. Shlapunov, “On the de Rham complex on a scale of anisotropic weighted Hölder spaces”, Siberian Electronic Math. Reports, 17 (2020), 428–444 | MR | Zbl

[23] J.M. Burgers, “Application of a model system to illustrate some points of the statistical theory of the turbulence”, Proc. Acad. Sci. Amsterdam, 43 (1940), 2–12 | MR | Zbl

[24] D.S. Mitrinović, J.E. Pečarić, A.M. Fink, Inequalities Involving Functions and Their Integrals and Derivatives, Mathematics and its Applications (East European Series), 53, Kluwer Academic Publishers, Dordrecht, 1991 | MR | Zbl

[25] O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, Nauka, M., 1967 | MR | Zbl

[26] R.S. Hamilton, “The inverse function theorem of Nash and Moser”, Bull. of the AMS, 7:1 (1982), 65–222 | DOI | MR | Zbl