Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2023_16_3_a0, author = {Ksenija V. Gagelgans and Alexander A. Shlapunov}, title = {The {Fredholm} {Navier--Stokes} type equations for the de {Rham} complex over weighted {H\"older} spaces}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {283--299}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_3_a0/} }
TY - JOUR AU - Ksenija V. Gagelgans AU - Alexander A. Shlapunov TI - The Fredholm Navier--Stokes type equations for the de Rham complex over weighted H\"older spaces JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2023 SP - 283 EP - 299 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2023_16_3_a0/ LA - en ID - JSFU_2023_16_3_a0 ER -
%0 Journal Article %A Ksenija V. Gagelgans %A Alexander A. Shlapunov %T The Fredholm Navier--Stokes type equations for the de Rham complex over weighted H\"older spaces %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2023 %P 283-299 %V 16 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2023_16_3_a0/ %G en %F JSFU_2023_16_3_a0
Ksenija V. Gagelgans; Alexander A. Shlapunov. The Fredholm Navier--Stokes type equations for the de Rham complex over weighted H\"older spaces. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 3, pp. 283-299. http://geodesic.mathdoc.fr/item/JSFU_2023_16_3_a0/
[1] R.Temam, Navier–Stokes Equations. Theory and Numerical Analysis, North Holland Publ. Comp., Amsterdam, 1979 | MR | Zbl
[2] O.A.Ladyzhenskaya, Mathematical Problems of Incompressible Viscous Fluid, Nauka, M., 1970
[3] J. Leray, “Essai sur les mouvements plans d'un liquid visqueux que limitend des parois”, J. Math. Pures Appl., 9 (1934), 331–418 | MR
[4] J. Leray, “Sur le mouvement plans d'un liquid visqueux emplissant l'espace”, Acta Math., 63 (1934), 193–248 | DOI | MR
[5] A.N.Kolmogorov, “Equations of turbulent mouvement of incompressible fluid”, Izv. AN SSSR, Physics Series, 6:1 (1942), 56–58
[6] E. Hopf, “Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen”, Math. Nachr., 4 (1951), 213–231 | DOI | MR | Zbl
[7] J.L.Lions, Quelques méthodes de résolution des problèmes aux limites non linéare, Dunod/Gauthier-Villars, Paris, 1969 | MR
[8] S.Smale, “An infinite dimensional version of Sard's theorem”, Amer. J. Math., 87:4 (1965), 861–866 | DOI | MR | Zbl
[9] R.Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, 2 nd ed., SIAM, Philadelphia, 1995 | MR | Zbl
[10] A.Mera, A.A.Shlapunov, N.Tarkhanov, “Navier–Stokes Equations for Elliptic Complexes”, Journal of Siberian Federal University, Math. and Phys., 12:1 (2019), 3–27 | DOI | MR
[11] A.A.Shlapunov, N.Tarkhanov, “Inverse image of precompact sets and existence theorems for the Navier–Stokes equations in spatially periodic setting”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 32:2 (2022), 278–297 | DOI | MR | Zbl
[12] A.A.Shlapunov, N.Tarkhanov, “An open mapping theorem for the Navier–Stokes type equations associated with the de Rham complex over ${\mathbb R}^n$”, Siberian Electronic Math. Reports, 18:2 (2021), 1433–1466 | DOI | MR | Zbl
[13] A.Polkovnikov, “An open mapping theorem for nonlinear operator equations associated with elliptic complexes”, Applicable Analysis | DOI | MR
[14] P.Plecháč, Šverák, “Singular and regular solutions of a nonlinear parabolic system”, Nonlinearity, 16:6 (2003), 2083–2097 | DOI | MR | Zbl
[15] Ch.Fefferman, Exiestence and smoothness of the Navier-Stokes equation, Clay Mathematics Institute, Cambridge, MA, 2000, 5 pp. http://www.claymath.org/millennium-problems/navier-stokes-equation
[16] A.A.Shlapunov, N. Tarkhanov, “An open mapping theorem for the Navier-Stokes Equations”, Advances and Applications in Fluid Mechanics, 21:2 (2018), 127–246 | DOI
[17] T.Behrndt, “On the Cauchy problem for the heat equation on Riemannian manifolds with conical singularities”, The Quarterly Journal of Math., 64:4 (2011), 981–1007 | DOI | MR
[18] K.V.Sidorova (Gagelgans), A.A.Shlapunov, “On the Closure of Smooth Compactly Supported Functions in Weighted Hoölder Spaces”, Math. Notes, 105:4 (2019), 616–631 | MR | Zbl
[19] K.V. Gagelgans, “On the cohomologies of the de Rham complex over weighted isotropic and anisotropic Hölder spaces”, Complex Variables and Elliptic Equations | DOI | MR
[20] R. McOwen, “Behavior of the Laplacian on weighted Sobolev spaces”, Comm. Pure Appl. Math., 32 (1979), 783–795 | DOI | MR | Zbl
[21] G. De Rham, Variétés Différentiables, Hermann$\$C, Éditeurs, Paris, 1955 | MR
[22] K.V. Gagelgans, A.A. Shlapunov, “On the de Rham complex on a scale of anisotropic weighted Hölder spaces”, Siberian Electronic Math. Reports, 17 (2020), 428–444 | MR | Zbl
[23] J.M. Burgers, “Application of a model system to illustrate some points of the statistical theory of the turbulence”, Proc. Acad. Sci. Amsterdam, 43 (1940), 2–12 | MR | Zbl
[24] D.S. Mitrinović, J.E. Pečarić, A.M. Fink, Inequalities Involving Functions and Their Integrals and Derivatives, Mathematics and its Applications (East European Series), 53, Kluwer Academic Publishers, Dordrecht, 1991 | MR | Zbl
[25] O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, Nauka, M., 1967 | MR | Zbl
[26] R.S. Hamilton, “The inverse function theorem of Nash and Moser”, Bull. of the AMS, 7:1 (1982), 65–222 | DOI | MR | Zbl