Theoretical analysis for a system of nonlinear $\phi$-Hilfer fractional Volterra-Fredholm integro-differential equations
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 2, pp. 216-229.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the existence of solutions for a system of nonlinear $\phi$-Hilfer fractional Volterra–Fredholm integro-differential equations with fractional integral conditions, by using the Krasnoselskii's fixed point theorem and Arzela–Ascoli theorem. Moreover, applying an alternative fixed point theorem due to Diaz and Margolis, we prove the Kummer stability of the system on the compact domains. An example is also presented to illustrate our results.
Keywords: $\phi$-Hilfer fractional Volterra-Fredholm integro-differential equation, Kummer's stability, Arzela–Ascoli theorem, Krasnoselskii fixed point theorem.
@article{JSFU_2023_16_2_a6,
     author = {Ahmed A. Hamoud and Nedal M. Mohammed and Rasool Shah},
     title = {Theoretical analysis for a system of nonlinear $\phi${-Hilfer} fractional {Volterra-Fredholm} integro-differential equations},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {216--229},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_2_a6/}
}
TY  - JOUR
AU  - Ahmed A. Hamoud
AU  - Nedal M. Mohammed
AU  - Rasool Shah
TI  - Theoretical analysis for a system of nonlinear $\phi$-Hilfer fractional Volterra-Fredholm integro-differential equations
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2023
SP  - 216
EP  - 229
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2023_16_2_a6/
LA  - en
ID  - JSFU_2023_16_2_a6
ER  - 
%0 Journal Article
%A Ahmed A. Hamoud
%A Nedal M. Mohammed
%A Rasool Shah
%T Theoretical analysis for a system of nonlinear $\phi$-Hilfer fractional Volterra-Fredholm integro-differential equations
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 216-229
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_2_a6/
%G en
%F JSFU_2023_16_2_a6
Ahmed A. Hamoud; Nedal M. Mohammed; Rasool Shah. Theoretical analysis for a system of nonlinear $\phi$-Hilfer fractional Volterra-Fredholm integro-differential equations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 2, pp. 216-229. http://geodesic.mathdoc.fr/item/JSFU_2023_16_2_a6/

[1] N.Bacaer, “Lotka, Volterra and the Predator-Prey System (1920-1926)”, A Short History of Mathematical Population Dynamics, Springer, London, UK, 2011, 71–76 | DOI | MR

[2] K.Liu, J.Wang, D.O'Regan, “Ulam-Hyers-Mittag-Leffler stability for $\psi$-Hilfer fractional-order delay differential equations”, Ado. Differ. Equ., 2019 (2019), 1–12 | DOI | MR

[3] I.Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, 198, Academic Press, San Diego, CA, USA | MR | Zbl

[4] S.Peng, J.Wang, X.Yu, “Stable manifolds for some fractional differential equations”, Nonlinear Anal. Model. Control, 23:5 (2018), 642–663 | DOI | MR | Zbl

[5] S.M.Jung, “Hyers-Ulam stability of linear differential equations of first order (II)”, Appl. Math. Lett., 19 (2006), 854–858 | DOI | MR | Zbl

[6] S.R.Aderyani, R.Saadati, M.Feckan, “The Cadariu-Radu Method for Existence, Uniqueness and Gauss Hypergeometric Stability of $\Omega$-Hilfer Fractional Differential Equations”, Mathematics, 9 (2021), 1408 | DOI | MR

[7] S.M.Jung, “Hyers-Ulam stability of linear differential equations of first order (III)”, J. Math. Anal. Appl., 311 (2005), 139–146 | DOI | MR | Zbl

[8] F.Mottaghi, Chenkuan Li, A.Thabet, S.Reza, G.Mohammad, “Existence and Kummer stability for a system of nonlinear $\phi$-Hilfer fractional differential equations with application”, Fractal and Fractional, 5 (2021), 1–15 | DOI

[9] G.Wang, M.Zhou, L.Sun, “Hyers-Ulam stability of linear differential equations of first order”, Appl. Math. Lett., 21 (2008), 1024–1028 | DOI | MR | Zbl

[10] A.Hamoud, K.Ghadle, “The approximate solutions of fractional Volterra-Fredholm integro-differential equations by using analytical techniques”, Probl. Anal. Issues Anal., 7(25):1 (2018), 41–58 | DOI | MR

[11] A.Hamoud, K.Ghadle, “Existence and uniqueness of the solution for Volterra-Fredholm integro-differential equations”, Journal of Siberian Federal University. Math. Phys., 11:6 (2018), 692–701 | DOI | MR

[12] A.Hamoud, K.Ghadle, “Existence and uniqueness of solutions for fractional mixed Volterra-Fredholm integro-differential equations”, Indian J. Math., 60:3 (2018), 375–395 | DOI | MR | Zbl

[13] A.Hamoud, K.Ghadle, M.Bani Issa, Giniswamy, “Existence and uniqueness theorems for fractional Volterra-Fredholm integro-differential equations”, Int. J. Appl. Math., 31:3 (2018), 333–348 | DOI | MR

[14] A.Hamoud, K.Ghadle, “Some new existence, uniqueness and convergence results for fractional Volterra-Fredholm integro-differential equations”, J. Appl. Comput. Mech., 5:1 (2019), 58–69 | DOI | MR

[15] A.Hamoud, “Existence and uniqueness of solutions for fractional neutral Volterra-Fredholm integro-differential equations”, Advances in the Theory of Nonlinear Analysis and its Application, 4:4 (2020), 321–331 | DOI

[16] F.Norouzi, G.M.N'Guerekata, “A study of $\phi$-Hilfer fractional differential system with application in financial crisis”, Chaos Solitons Fractals X, 6 (2021), 100056 | DOI

[17] J.Sousa, C.da Vanterler, E. Capelas De Oliveira, “On the $\psi$-Hilfer fractional derivative”, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 72–91 | DOI | MR | Zbl

[18] A.A.Kilbas, H.M.Srivastava, J.J.Trujillo, Theory and Applications of Fractional Equations, Elsevier, Amsterdam, The Netherlands, 2006 | MR | Zbl

[19] M.Gabeleh, D.K.Patel, P.R.Patle, M.D.L.Sen, “Existence of a solution of Hilfer fractional hybrid problems via new Krasnoselskiitype fixed point theorems”, Open Math., 19 (2021), 450–469 | DOI | MR | Zbl

[20] T.A.Burton, “A Fixed-Point Theorem of Krasnoselskii”, Appl. Math. Lett., 11:1 (1998), 85–88 | DOI | MR | Zbl

[21] S.K.Eiman, M.Sarwar, “Study on Krasnoselskii's fixed point theorem for Caputo-Fabrizio fractional differential equations”, Adv. Differ. Equ., 2020 (2020), 178 | DOI | MR | Zbl

[22] J.B.Diaz, B.Margolis, “A fixed point theorem of the alternative, for contractions on a generalized complete metric space”, Bull. Am. Math. Soc., 74 (1968), 305–309 | DOI | MR | Zbl