Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2023_16_2_a6, author = {Ahmed A. Hamoud and Nedal M. Mohammed and Rasool Shah}, title = {Theoretical analysis for a system of nonlinear $\phi${-Hilfer} fractional {Volterra-Fredholm} integro-differential equations}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {216--229}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_2_a6/} }
TY - JOUR AU - Ahmed A. Hamoud AU - Nedal M. Mohammed AU - Rasool Shah TI - Theoretical analysis for a system of nonlinear $\phi$-Hilfer fractional Volterra-Fredholm integro-differential equations JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2023 SP - 216 EP - 229 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2023_16_2_a6/ LA - en ID - JSFU_2023_16_2_a6 ER -
%0 Journal Article %A Ahmed A. Hamoud %A Nedal M. Mohammed %A Rasool Shah %T Theoretical analysis for a system of nonlinear $\phi$-Hilfer fractional Volterra-Fredholm integro-differential equations %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2023 %P 216-229 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2023_16_2_a6/ %G en %F JSFU_2023_16_2_a6
Ahmed A. Hamoud; Nedal M. Mohammed; Rasool Shah. Theoretical analysis for a system of nonlinear $\phi$-Hilfer fractional Volterra-Fredholm integro-differential equations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 2, pp. 216-229. http://geodesic.mathdoc.fr/item/JSFU_2023_16_2_a6/
[1] N.Bacaer, “Lotka, Volterra and the Predator-Prey System (1920-1926)”, A Short History of Mathematical Population Dynamics, Springer, London, UK, 2011, 71–76 | DOI | MR
[2] K.Liu, J.Wang, D.O'Regan, “Ulam-Hyers-Mittag-Leffler stability for $\psi$-Hilfer fractional-order delay differential equations”, Ado. Differ. Equ., 2019 (2019), 1–12 | DOI | MR
[3] I.Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, 198, Academic Press, San Diego, CA, USA | MR | Zbl
[4] S.Peng, J.Wang, X.Yu, “Stable manifolds for some fractional differential equations”, Nonlinear Anal. Model. Control, 23:5 (2018), 642–663 | DOI | MR | Zbl
[5] S.M.Jung, “Hyers-Ulam stability of linear differential equations of first order (II)”, Appl. Math. Lett., 19 (2006), 854–858 | DOI | MR | Zbl
[6] S.R.Aderyani, R.Saadati, M.Feckan, “The Cadariu-Radu Method for Existence, Uniqueness and Gauss Hypergeometric Stability of $\Omega$-Hilfer Fractional Differential Equations”, Mathematics, 9 (2021), 1408 | DOI | MR
[7] S.M.Jung, “Hyers-Ulam stability of linear differential equations of first order (III)”, J. Math. Anal. Appl., 311 (2005), 139–146 | DOI | MR | Zbl
[8] F.Mottaghi, Chenkuan Li, A.Thabet, S.Reza, G.Mohammad, “Existence and Kummer stability for a system of nonlinear $\phi$-Hilfer fractional differential equations with application”, Fractal and Fractional, 5 (2021), 1–15 | DOI
[9] G.Wang, M.Zhou, L.Sun, “Hyers-Ulam stability of linear differential equations of first order”, Appl. Math. Lett., 21 (2008), 1024–1028 | DOI | MR | Zbl
[10] A.Hamoud, K.Ghadle, “The approximate solutions of fractional Volterra-Fredholm integro-differential equations by using analytical techniques”, Probl. Anal. Issues Anal., 7(25):1 (2018), 41–58 | DOI | MR
[11] A.Hamoud, K.Ghadle, “Existence and uniqueness of the solution for Volterra-Fredholm integro-differential equations”, Journal of Siberian Federal University. Math. Phys., 11:6 (2018), 692–701 | DOI | MR
[12] A.Hamoud, K.Ghadle, “Existence and uniqueness of solutions for fractional mixed Volterra-Fredholm integro-differential equations”, Indian J. Math., 60:3 (2018), 375–395 | DOI | MR | Zbl
[13] A.Hamoud, K.Ghadle, M.Bani Issa, Giniswamy, “Existence and uniqueness theorems for fractional Volterra-Fredholm integro-differential equations”, Int. J. Appl. Math., 31:3 (2018), 333–348 | DOI | MR
[14] A.Hamoud, K.Ghadle, “Some new existence, uniqueness and convergence results for fractional Volterra-Fredholm integro-differential equations”, J. Appl. Comput. Mech., 5:1 (2019), 58–69 | DOI | MR
[15] A.Hamoud, “Existence and uniqueness of solutions for fractional neutral Volterra-Fredholm integro-differential equations”, Advances in the Theory of Nonlinear Analysis and its Application, 4:4 (2020), 321–331 | DOI
[16] F.Norouzi, G.M.N'Guerekata, “A study of $\phi$-Hilfer fractional differential system with application in financial crisis”, Chaos Solitons Fractals X, 6 (2021), 100056 | DOI
[17] J.Sousa, C.da Vanterler, E. Capelas De Oliveira, “On the $\psi$-Hilfer fractional derivative”, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 72–91 | DOI | MR | Zbl
[18] A.A.Kilbas, H.M.Srivastava, J.J.Trujillo, Theory and Applications of Fractional Equations, Elsevier, Amsterdam, The Netherlands, 2006 | MR | Zbl
[19] M.Gabeleh, D.K.Patel, P.R.Patle, M.D.L.Sen, “Existence of a solution of Hilfer fractional hybrid problems via new Krasnoselskiitype fixed point theorems”, Open Math., 19 (2021), 450–469 | DOI | MR | Zbl
[20] T.A.Burton, “A Fixed-Point Theorem of Krasnoselskii”, Appl. Math. Lett., 11:1 (1998), 85–88 | DOI | MR | Zbl
[21] S.K.Eiman, M.Sarwar, “Study on Krasnoselskii's fixed point theorem for Caputo-Fabrizio fractional differential equations”, Adv. Differ. Equ., 2020 (2020), 178 | DOI | MR | Zbl
[22] J.B.Diaz, B.Margolis, “A fixed point theorem of the alternative, for contractions on a generalized complete metric space”, Bull. Am. Math. Soc., 74 (1968), 305–309 | DOI | MR | Zbl