Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2023_16_2_a5, author = {Ryma Douas and Ilhem Laroussi and Soumia Kharfouchi}, title = {Incomplete least squared regression function estimator based on wavelets}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {204--215}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_2_a5/} }
TY - JOUR AU - Ryma Douas AU - Ilhem Laroussi AU - Soumia Kharfouchi TI - Incomplete least squared regression function estimator based on wavelets JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2023 SP - 204 EP - 215 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2023_16_2_a5/ LA - en ID - JSFU_2023_16_2_a5 ER -
%0 Journal Article %A Ryma Douas %A Ilhem Laroussi %A Soumia Kharfouchi %T Incomplete least squared regression function estimator based on wavelets %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2023 %P 204-215 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2023_16_2_a5/ %G en %F JSFU_2023_16_2_a5
Ryma Douas; Ilhem Laroussi; Soumia Kharfouchi. Incomplete least squared regression function estimator based on wavelets. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 2, pp. 204-215. http://geodesic.mathdoc.fr/item/JSFU_2023_16_2_a5/
[1] L.Devroye, L.Györfi, A.Krzyżak, G.Lugosi, “On the strong universal consistency of nearest neighbor regression function estimates”, Annals of Statistics, 22 (1994), 1371–1385 | MR | Zbl
[2] L. Devroye, L.Györfi, G. Lugosi, A probabilist theory of pattern Recognition, Springer Verlag, 1996 | MR
[3] N.R.Draper, H.Smith, Applied Regression Analysis, 2nd ed., Wiley, New York, 1981 | MR | Zbl
[4] D.Donoho, I.M.Johnstone, “Ideal spatial adaptation by wavelet shrinkage”, Biometrika, 81 (1994), 425–455 | DOI | MR | Zbl
[5] D.Donoho, “Adapting to unknown smoothness via wavelet shrinkage”, J. Am. Statist. Ass., 90 (1995), 1200–1224 | DOI | MR | Zbl
[6] D.Donoho, I.M.Johnstone, “Minimax estimation via wavelet shrinkage”, Annals of Statistics, 26 (1998), 879–921 | DOI | MR | Zbl
[7] L.Györfi, M.Kohler, A.Krzyżak, H.Walk, A Distribution Free theory of Non parametric Regression, Springer–Verlag, New York, 2002 | DOI | MR
[8] D.J.Hart, Non parametric Smoothing and Lack-of-Fit Tests, Springer–Verlag, New York, 1997 | MR
[9] T.Hastie, R.J.Tibshirani, Generalized Additive Models, Chapman and Hall, London, UK, 1990 | MR | Zbl
[10] D.Haussler, “Decision theoretic generalizations of the PAC model for neural net and other learning applications”, Inform. Comput., 100 (1992), 78–150 | DOI | MR | Zbl
[11] E.L.Kaplan, P.Meier, “Nom parametric estimation from incomplete observations”, J. Amer. Statist. Assoc., 53 (1958), 457–481 | DOI | MR | Zbl
[12] K.Kebabi, I.Laroussi, F.Messaci, “Least squares estimators of the regression function with twice censored data”, Statist. Probab. Lett., 81 (2011), 1588–1593 | DOI | MR | Zbl
[13] K.Kebabi, F.Messaci, “Rate of the almost complete convergence of a kernel regression estimate with twice censored data”, Statist. Probab. Lett., 82:11 (2012), 1908–1913 | DOI | MR | Zbl
[14] M.Kohler, “On the universal consistency of a least squares spline regression estimator”, Math. Methods Statist., 6 (1997), 349–364 | MR | Zbl
[15] M.Kohler, “Universally consistent regression function estimation using hierarchical b-splines”, J. Multivariate Anal., 67 (1999), 138–164 | DOI | MR
[16] M.Kohler, A.Krzyżak, “Nonparametric regression estimation using penalized least squares”, IEEE Trans. Inform. Theory, 47 (2001), 3054–3058 | DOI | MR | Zbl
[17] M.Kohler, K.Mȧthé, M. Pintér, “Prediction from randomly right censored data”, J. Multivariate Anal., 80 (2002), 73–100 | DOI | MR | Zbl
[18] F.Messaci, “Local averaging estimates of the regression function with twice censored data”, Statist. Probab. Lett., 80 (2010), 1508–1511 | DOI | MR | Zbl
[19] D.Morales, L.Pardo, V.Quesada, “Bayesian survival estimation for incomplete data when the life distribution is proportionally related to the censoring time distribution”, Comm. Statist. Theory Methods, 20 (1991), 831–850 | DOI | MR | Zbl
[20] E.A.Nadaraya, “On estimating regression”, Theory of Probability and Its Applications, 9:1 (1964), 141–142 | DOI
[21] A.Nobel, “Histogram Regression Estimation Using Data-dependent Partitions”, Ann. Statist, 24 (1996), 1084–1105 | DOI | MR | Zbl
[22] V.Patilea, J.M.Rolin, “Product-limit estimators of the survival function with twice censored data”, Ann. Statist., 34:2 (2006), 925–938 | DOI | MR | Zbl
[23] V.N.Vapnik, A.Y.Chervonenkis, “On the uniform convergence of relative frequencies of events to their probabilities”, Theory of Probability and its Applications, 16 (1971), 264–280 | DOI | MR | Zbl
[24] V.N.Vapnik, Estimation of Dependencies Based on Empirical Data, Springer-Verlag, New York, 1982 | MR
[25] V.N.Vapnik, Statistical Learning Theory, Wiley, New York, 1998 | MR | Zbl