On the ill-posed Cauchy problem for the polyharmonic heat equation
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 2, pp. 194-203.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the ill-posed Cauchy problem for the polyharmonic heat equation on recovering a function, satisfying the equation $(\partial _t + (- \Delta)^m) u=0$ in a cylindrical domain in the half-space ${\mathbb R}^n \times [0,+\infty)$, where $n\geqslant 1$, $m\geqslant 1$ and $\Delta$ is the Laplace operator, via its values and the values of its normal derivatives up to order $(2m-1)$ on a given part of the lateral surface of the cylinder. We obtain a Uniqueness Theorem for the problem and a criterion of its solvability in terms of the real-analytic continuation of parabolic potentials, associated with the Cauchy data.
Keywords: the polyharmonic heat equation, ill-posed problems, integral representation method.
@article{JSFU_2023_16_2_a4,
     author = {Ilya A. Kurilenko and Alexander A. Shlapunov},
     title = {On the ill-posed {Cauchy} problem for the polyharmonic heat equation},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {194--203},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_2_a4/}
}
TY  - JOUR
AU  - Ilya A. Kurilenko
AU  - Alexander A. Shlapunov
TI  - On the ill-posed Cauchy problem for the polyharmonic heat equation
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2023
SP  - 194
EP  - 203
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2023_16_2_a4/
LA  - en
ID  - JSFU_2023_16_2_a4
ER  - 
%0 Journal Article
%A Ilya A. Kurilenko
%A Alexander A. Shlapunov
%T On the ill-posed Cauchy problem for the polyharmonic heat equation
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 194-203
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_2_a4/
%G en
%F JSFU_2023_16_2_a4
Ilya A. Kurilenko; Alexander A. Shlapunov. On the ill-posed Cauchy problem for the polyharmonic heat equation. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 2, pp. 194-203. http://geodesic.mathdoc.fr/item/JSFU_2023_16_2_a4/

[1] R.E.Puzyrev, A.A.Shlapunov, “On an ill-Posed problem for the heat equation”, J. Sib. Fed. Univ., Math. and Physics, 5:3 (2012), 337–348

[2] R.E.Puzyrev, A.A.Shlapunov, “On a mixed problem for the parabolic Lamé type operator”, J. Inv. Ill-posed Problems, 23:6 (2015), 555–570 | DOI | MR | Zbl

[3] K.O.Makhmudov, O.I.Makhmudov, N.N.Tarkhanov, “A Nonstandard Cauchy Problem for the Heat Equation”, Math. Notes, 102:2 (2017), 250–260 | DOI | MR | Zbl

[4] I.A.Kurilenko, A.A.Shlapunov, “On Carleman-type Formulas for Solutions to the Heat Equation”, J. Sib. Fed. Univ. Math. Phys., 12:4 (2019), 421–433 | DOI | MR

[5] P.Yu.Vilkov, I.A.Kurilenko, A.A.Shlapunov, “Approximation of solutions to parabolic Lamé type operators in cylinder domains and Carleman's formulas for them”, Siberian Math. J., 63:6 (2022), 1049–1059 | DOI | MR | Zbl

[6] M.M.Lavrent'ev, “On the Cauchy problem for Laplace equation”, Izvestia AN SSSR. Ser. matem., 1956, no. 20, 819–842 (in Russian) | MR | Zbl

[7] M.M.Lavrent'ev, V.G.Romanov, S.P.Shishatskii, Ill-posed problems of mathematical physics and analysis, Nauka, M., 1980 | MR | Zbl

[8] A.N.Tihonov, V.Ya.Arsenin, Methods of solving ill-posed problems, Nauka, M., 1986 (in Russian) | MR

[9] Kluwer Ac. Publ., Dordrecht, 1993 | MR | Zbl | Zbl

[10] L.A.Aizenberg, A.M.Kytmanov, “On the possibility of holomorphic continuation to a domain of functions given on a part of its boundary”, Math. USSR-Sb., 72:2 (1992), 467–483 | DOI | MR | Zbl

[11] A.A.Shlapunov, “On the Cauchy Problem for the Laplace Equation”, Siberian Math. J., 33:3 (1992), 534–542 | DOI | MR | Zbl

[12] A.A.Shlapunov, N.Tarkhanov, “Bases with double orthogonality in the Cauchy problem for systems with injective symbols”, Proc. London. Math. Soc., 71:1 (1995), 1–54 | DOI | MR

[13] N.Tarkhanov, The Cauchy problem for solutions of elliptic equations, Akademie–Verlag, Berlin, 1995 | MR | Zbl

[14] S.D.Eidel'man, “Parabolic equations”, Partial differential equations- 6, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 63, VINITI, M., 1990, 201–313 (in Russian)

[15] V.D.Repnikov, S.D.Eidel'man, “Necessary and sufficient conditions for establishing a solution to the Cauchy problem”, Dokl. AN SSSR, 167:2 (1966), 298–301 (in Russian) | MR | Zbl

[16] V.S.Vladimirov, Equations the mathematical physics, Nauka, M., 1988 (in Russian) | MR

[17] M.S.Agranovich, M.I.Vishik, “Elliptic problems with a parameter and parabolic problems of general type”, Russian Mathematical Surveys (IOP Publishing), 19:3 (1964), 53–157 | DOI | MR | Zbl

[18] W.Chelkh, I.Ly, N.N.Tarkhanov, “A remark on the Laplace transform”, Siberian Math. J., 61:4 (2020), 755–762 | DOI | MR | Zbl

[19] A.Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc, Englewood Cliffs, NJ, 1964 | MR | Zbl

[20] O.A.Ladyzhenskaya, V.A.Solonnikov, N.N.Ural'tseva, Linear and quasilinear equations of parabolic type, Nauka, M., 1967 (in Russian) | MR | Zbl

[21] N.V.Krylov, Lectures on elliptic and parabolic equations in Hölder spaces, Graduate Studies in Mathematics, 12, AMS, Providence, Rhode Island, 1996 | DOI | MR | Zbl

[22] N.V.Krylov, Lectures on elliptic and parabolic equations in Sobolev spaces, Graduate Studies in Mathematics, 96, AMS, Providence, Rhode Island, 2008 | DOI | MR | Zbl

[23] J.-L.Lions, Quelques méthodes de résolution des problèmes aux limites non linéare, Dunod/Gauthier-Villars, Paris, 1969 | MR

[24] J.Hadamard, Lectures on Cauchy's problem in linear partial differential equations, Yale Univ. Press, New Haven-London, 1923 | MR

[25] V.P.Mikhailov, Partial differential equations, Nauka, M., 1976 (in Russian) | MR

[26] E.M.Landis, Second order equations of elliptic and parabolic types, Nauka, M., 1971 (in Russian) | MR

[27] A.G.Sveshnikov, A.N.Bogolyubov, V.V.Kravtsov, Lectures on mathematical physics, Nauka, M., 2004 (in Russian) | MR

[28] N.N.Tarkhanov, Complexes of differential operators, Kluwer Ac. Publ., Dordrecht, 1995 | MR | Zbl

[29] D.Gilbarg, N.Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin, 1983 | MR | Zbl

[30] N.Aronszajn, T.Creese, L.Lipkin, Polyharmonic functions, Clarendon Press, Oxford, 1983 | MR | Zbl