On maximal operators associated with a family of singular surfaces
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 2, pp. 265-274.

Voir la notice de l'article provenant de la source Math-Net.Ru

Maximal operator associated with singular surfaces is considered in this paper. The boundedness of this operator in the space of summable functions is proved when singular surfaces are given by parametric equations. Boundedness index of the maximal operator is also found for these spaces.
Keywords: maximal operator, averaging operator, fractional power series, singular surface, boundedness indicator.
@article{JSFU_2023_16_2_a11,
     author = {Salim E. Usmanov},
     title = {On maximal operators associated with a family of singular surfaces},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {265--274},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_2_a11/}
}
TY  - JOUR
AU  - Salim E. Usmanov
TI  - On maximal operators associated with a family of singular surfaces
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2023
SP  - 265
EP  - 274
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2023_16_2_a11/
LA  - en
ID  - JSFU_2023_16_2_a11
ER  - 
%0 Journal Article
%A Salim E. Usmanov
%T On maximal operators associated with a family of singular surfaces
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 265-274
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_2_a11/
%G en
%F JSFU_2023_16_2_a11
Salim E. Usmanov. On maximal operators associated with a family of singular surfaces. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 2, pp. 265-274. http://geodesic.mathdoc.fr/item/JSFU_2023_16_2_a11/

[1] E.M.Stein, “Maximal functions. Spherical means”, Proc.Nat. Acad. Sci. U.S.A., 73:7 (1976), 2174–2175 | DOI | MR | Zbl

[2] J.Bourgain, “Averages in the plane convex curves and maximal operators”, J.Anal. Math., 47 (1986), 69–85 | DOI | MR | Zbl

[3] A. Greenleaf, “Principal curvature and harmonic analysis”, Indiana Univ. Math. J., 30 (1981), 519–537 | DOI | MR | Zbl

[4] C.D.Sogge, “Maximal operators associated to hypersurfaces with one nonvanishing principal curvature”, Fourier analysis and partial differential equations, Stud. Adv. Math., 1995, 317–323 | MR | Zbl

[5] C.D.Sogge, E.M.Stein, “Averages of functions over hypersurfaces in $\mathbb{R}^{n}$”, Inventiones mathematicae, 82 (1985), 543–556 | DOI | MR | Zbl

[6] A.Iosevich, E.Sawyer, “Maximal Averages over surfaces”, Adv. in Math., 132 (1997), 46–119 | DOI | MR | Zbl

[7] A.Iosevich, E.Sawyer, A.Seeger, “On averaging operators associated with convex hypersurfaces of finite type”, J. Anal. Math., 79 (1999), 159–187 | DOI | MR | Zbl

[8] I.A.Ikromov, M.Kempe, D.Müller, “Damped oscillatory integrals and boundedness of maximal operators associated to mixed homogeneous hypersurfaces”, Duke Math. J., 126 (2005), 471–490 | DOI | MR | Zbl

[9] I.A.Ikromov, M.Kempe, D.Müller, “Estimates for maximal functions associated to hypersurfaces in $\mathbb{R}^{3}$ and related problems of harmonic analysis”, Acta Math., 204 (2010), 151–271 | DOI | MR | Zbl

[10] I.A.Ikromov, “Damped oscillatory integrals and maximal operators”, Math Notes, 78:6 (2005), 773–790 | DOI | MR | Zbl

[11] A.Nagel, A.Seeger, S.Wainger, “Averages over convex hypersurfaces”, Amer. J. Math., 115 (1993), 903–927 | DOI | MR | Zbl

[12] I.A.Ikromov, S.E.Usmanov, “On boundedness of maximal operators associated with hypersurfaces”, J. Math. Sci., 264 (2022), 715–745 | DOI | MR | Zbl

[13] S.E.Usmanov, “The Boundedness of Maximal Operators Associated with Singular Surfaces”, Russ. Math., 65 (2021), 73–83 | DOI | MR | Zbl

[14] S.E.Usmanov, “On the Boundedness Problem of Maximal Operators”, Russ Math., 66 (2022), 74–83 | DOI | Zbl

[15] T.Collins, A.Greenleaf, M.Pramanik, “A multi-dimensional resolution of singularities with applications to analysis”, Amer. J. Math., 135 (2013), 1179–1252 | DOI | MR | Zbl

[16] S.V.Baxvalov, L.I.Babushkin, V.P.Ivaniskaya, Analytic geometry, Prosveshenie, M., 1970 (in Russian)