Recovering a local Lie group from structure constants
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 1, pp. 98-109.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a coordinate system of the 2nd kind corresponding to canonical coordinates of the 1st kind (in terminology of A. I. Maltsev), thereby obtaining a parametric solution of a Lie system of equations. We also give an integral representation of the group operations $f(x,y)$ of the local Lie group $G$ in canonical coordinates of the 1st kind. Our main tool is the modified formula of A. P. Yuzhakov for implicit mappings. The operation $f(x,y)$ is also represented as a power series, which is the reduced form of the Campbell–Hausdorff series.
Keywords: local Lie group, Campbell–Hausdorff series, formula of A. P. Yuzhakov.
@article{JSFU_2023_16_1_a9,
     author = {Vitaly A. Stepanenko},
     title = {Recovering a local {Lie} group from structure constants},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {98--109},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a9/}
}
TY  - JOUR
AU  - Vitaly A. Stepanenko
TI  - Recovering a local Lie group from structure constants
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2023
SP  - 98
EP  - 109
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a9/
LA  - en
ID  - JSFU_2023_16_1_a9
ER  - 
%0 Journal Article
%A Vitaly A. Stepanenko
%T Recovering a local Lie group from structure constants
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 98-109
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a9/
%G en
%F JSFU_2023_16_1_a9
Vitaly A. Stepanenko. Recovering a local Lie group from structure constants. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 1, pp. 98-109. http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a9/

[1] L.S.Pontryagin, Continuous groups, Nauka, M., 1984 (in Russian)

[2] V.V.Gorbatsevich, “The construction of a simply connected Lie group with a given Lie algebra”, Russian Math. Surveys, 41:3 (1986), 207–208 | DOI

[3] D.P.Zhelobenko, Compact Groups of Lie and their representations, Nauka, M., 1970 (in Russian)

[4] L.V.Ovsyannikov, Analytical Groups. Introduction to Theory infinite continuous groups of transformations, Novosibirsk, 1972 (in Russian)

[5] R.Richtmayer, Principles of modern mathematical physics, v. 2, Mir, M., 1984 (in Russian)

[6] A. P. Yuzhakov, “On the application of the multiple logarithmic residue for decomposition of implicit functions into power series”, Math. Sb., 26:2 (1975), 165–179 | DOI

[7] L.A.Aizenberg, A.P.Yuzhakov, Integral representations and residues in multivariate complex analysis, Nauka, Novosibirsk, 1979 (in Russian)

[8] A.I.Maltsev, “About one class of homogeneous spaces”, Izv. AN USSR. Ser. math., 13:1 (1949), 9–32 (in Russian)

[9] L.V.Ovsyannikov, Group analysis of differential equations, Nauka, M., 1978 (in Russian)

[10] A.K.Tsikh, Multidimensional residues and their applications, Nauka, 1988 (in Russian)

[11] N.Ya.Vilenkin, Special functions and the theory of representations of groups, Nauka, M., 1991 (in Russian)