Recovering a local Lie group from structure constants
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 1, pp. 98-109
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct a coordinate system of the 2nd kind corresponding to canonical coordinates of the 1st kind (in terminology of A. I. Maltsev), thereby obtaining a parametric solution of a Lie system of equations. We also give an integral representation of the group operations $f(x,y)$ of the local Lie group $G$ in canonical coordinates of the 1st kind. Our main tool is the modified formula of A. P. Yuzhakov for implicit mappings. The operation $f(x,y)$ is also represented as a power series, which is the reduced form of the Campbell–Hausdorff series.
Keywords:
local Lie group, Campbell–Hausdorff series, formula of A. P. Yuzhakov.
@article{JSFU_2023_16_1_a9,
author = {Vitaly A. Stepanenko},
title = {Recovering a local {Lie} group from structure constants},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {98--109},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a9/}
}
TY - JOUR AU - Vitaly A. Stepanenko TI - Recovering a local Lie group from structure constants JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2023 SP - 98 EP - 109 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a9/ LA - en ID - JSFU_2023_16_1_a9 ER -
Vitaly A. Stepanenko. Recovering a local Lie group from structure constants. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 1, pp. 98-109. http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a9/