Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2023_16_1_a8, author = {Viktoriya S. Petrakova and Vladimir V. Shaidurov}, title = {SIRV-D optimal control model for {COVID-19} propagation scenarios}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {87--97}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a8/} }
TY - JOUR AU - Viktoriya S. Petrakova AU - Vladimir V. Shaidurov TI - SIRV-D optimal control model for COVID-19 propagation scenarios JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2023 SP - 87 EP - 97 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a8/ LA - en ID - JSFU_2023_16_1_a8 ER -
%0 Journal Article %A Viktoriya S. Petrakova %A Vladimir V. Shaidurov %T SIRV-D optimal control model for COVID-19 propagation scenarios %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2023 %P 87-97 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a8/ %G en %F JSFU_2023_16_1_a8
Viktoriya S. Petrakova; Vladimir V. Shaidurov. SIRV-D optimal control model for COVID-19 propagation scenarios. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 1, pp. 87-97. http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a8/
[1] D.Rafiq, A.Batool, M. Bazaz, “Three months of COVID-19: a systematic review and meta-analysis”, Rev. Med. Virol., 30:4 (2020), e2113 | DOI
[2] W.O.Kermack, A.G.McKendrick, “A contribution to the mathematical theory of epidemics”, Proc. R. Soc. Lond. Ser. A, Contain. Pap. Math. Phys. Character, 115 (1927), 700–721
[3] O.I.Krivorotko, S.I.Kabanikhin, Mathematical models of COVID-19 spread, 2021, 700–721, arXiv: 2112.05315
[4] H.Mohammadi, S.Rezapour, A.Jajarmi, “On the Fractional SIRD Mathematical Model and Control for the Transmission of COVID-19: the First and the Second Waves of the Disease in Iran and Japan”, ISA Transactions, 124 (2021), 103–114 | DOI
[5] S.B.Ramezani, A Amirlatifi, S.Rahimi, “A novel compartmental model to capture the nonlinear trend of COVID-19”, Comput. Biol. Med., 134 (2021), 104421 | DOI
[6] O.I.Krivorotko, S.I.Kabanikhin, N.Y.Zyatkov et al., “Mathematical modeling and forecasting of COVID-19 in Moscow and Novosibirsk region”, Numer. Analys. Appl., 13 (2020), 332–348
[7] F.Brauer, P.Driessche, J.Wu, “Mathematical Epidemiology”, Lecture Notes in Mathematics, 355, 2008, 412
[8] T.T.Marinov, R.S.Marinova, “Dynamics of COVID-19 using inverse problem for coefficient identification in SIR epidemic models”, Chaos, Solitons and Fractals, 5 (2020), 100041 | DOI
[9] A.Cintroń-Arias, H.T.Banks, A.Capaldi, A.L.Lloyd, “A sensitivity matrix based methodology for inverse problem formulation”, Journal of Inverse and Ill-Posed Problems, 17:6 (2009), 1–20 | DOI
[10] A.Paticchio, T. Scarlatti, et al., Semi-supervised Neural Networks solve an inverse problem for modeling Covid-19 spread, 2020, arXiv: 2010.05074v1 [cs.LG]
[11] (Last access - 05/21/2022) https://ngs24.ru/text/health/2021/09/23/70151987/
[12] A.D.Lewis, The Maximum Principle of Pontryaginin control and in optimal control, Interim Reportson work of the International Institute for Applied Systems Analysis, 143, 2006