Mathematical modeling of the thin liquid layer runoff process based on generalized conditions at the interface: parametric analysis and numerical solution
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 1, pp. 56-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of a thin layer of liquid flowing down an inclined substrate under conditions of a co-current gas flow is considered. Mathematical modeling is carried out on the basis of the Navier–Stokes and heat transfer equations, as well as generalized conditions at the thermocapillary boundary. Parametric analysis of the problem is made. An algorithm of numerical solution is constructed for the evolution equation determining the thickness of the liquid layer. A comparison of numerical calculations for ethanol and HFE-7100 liquids is presented. The influence of an additional term in the interface energy equation on the dynamics of the liquid layer is shown.
Keywords: Navier–Stokes equations, thin layer approximation, evaporation, parametric analysis, numerical solution.
Mots-clés : interface
@article{JSFU_2023_16_1_a5,
     author = {Ekaterina V. Laskovets},
     title = {Mathematical modeling of the thin liquid layer runoff process based on generalized conditions at the interface: parametric analysis and numerical solution},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {56--65},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a5/}
}
TY  - JOUR
AU  - Ekaterina V. Laskovets
TI  - Mathematical modeling of the thin liquid layer runoff process based on generalized conditions at the interface: parametric analysis and numerical solution
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2023
SP  - 56
EP  - 65
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a5/
LA  - en
ID  - JSFU_2023_16_1_a5
ER  - 
%0 Journal Article
%A Ekaterina V. Laskovets
%T Mathematical modeling of the thin liquid layer runoff process based on generalized conditions at the interface: parametric analysis and numerical solution
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 56-65
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a5/
%G en
%F JSFU_2023_16_1_a5
Ekaterina V. Laskovets. Mathematical modeling of the thin liquid layer runoff process based on generalized conditions at the interface: parametric analysis and numerical solution. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 1, pp. 56-65. http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a5/

[1] O.N.Goncharova, E.V.Rezanova, Ya.A. Tarasov, “Mathematical modeling of thermocapillary flows in a thin liquid layer taking into account evaporation”, Izvestiya AltGU, 81:1 (2014), 47–52 (in Russian)

[2] O.A.Kabov, Y.O.Kabova, V.V.Kuznetsov, “Evaporation of a non-isothermal liquid film in a microchannel with a cocurrient gas flow”, DAN, 446:5 (2012), 522–526 (in Russian)

[3] O.N.Goncharova, E.V.Rezanova, “Mathematical modelling of the evaporating liquid films on the basis of the generalized interface conditions”, MATEC Web of Conferences, 84:3 (2016), 00013 | DOI

[4] S.Miladinova, G.Lebon, S.Slavtchev, J.-C.Legros, “The effect of non-uniformly heating on long-wave instabilities of evaporating falling films”, Proc. 6th Workshop on Transport Phenomena in Two-Phase Flow (Bulgaria, Bourgas, 2001), 121–128

[5] S.Miladinova, G.Lebon, S.Slavtchev, J.-C.Legros, “Long-wave instabilities of non-uniformly heated falling films”, Journal of Fluid Mechanics, 453 (2002), 153–175

[6] A.Oron, S.H.Davis, S.G.Bankoff, “Long-scale evolution of thin liquid films”, Reviews of Modern Physics, 69:3 (1997), 931–980

[7] V.B.Bekezhanova, O.N.Goncharova, “Problems of evaporative convection (review)”, Prikladnaya matematika i mehanika, 82:2 (2018), 219–260 (in Russian)

[8] O.N.Goncharova, “Modeling of flows under conditions of heat and mass transfer at the boundary”, Izvestiya AltGU, 73:1 (2012), 12–18 (in Russian)

[9] V.V.Kuznetsov, “Heat and mass transfer at the liquid—vapor interface”, Izvestiya RAN MJG, 2011, no. 5, 97–107 (in Russian)

[10] C.S.Iorio, O.N.Goncharova, O.A.Kabov, “Study of evaporative convection in an open cavity under shear stress flow”, Microgravity Sci. Technol., 21:1 (2009), 313–320 | DOI

[11] C.S.Iorio, O.N.Goncharova, O.A.Kabov, “Heat and mass transfer control by evaporative thermal pattering of thin liquid layer”, Computational Thermal Sci., 3:4 (2011), 333–342 | DOI

[12] E.V.Rezanova, “Numerical investigation of the liquid film flows with evaporation at thermocapillary interface”, MATEC Web of Conferences, 2016, no. 84, 00032

[13] K.S.Das, “Surface thermal capacity and its effects on the boundary conditions at fluid-fluid interfaces”, Phys. Rev. E, 75 (2007), 065303, 4 pp. | DOI

[14] E.V.Rezanova, “Numerical study of a thin liquid layer flow with evaporation”, Izvestiya AltGU, 89:1 (2016), 168–172 (in Russian)

[15] E.Ya.Gatapova, O.A.Kabov, V.V.Kuznetsov, J.-C.Legros, “Evaporating shear-driven liquid in minichannel with local heat source”, Journal of Engineering Thermophysics, 13:2 (2005), 179–197