Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2023_16_1_a3, author = {Vladlena V. Shumilova}, title = {Spectrum of one-dimensional eigenoscillations of two-phase layered composites}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {35--47}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a3/} }
TY - JOUR AU - Vladlena V. Shumilova TI - Spectrum of one-dimensional eigenoscillations of two-phase layered composites JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2023 SP - 35 EP - 47 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a3/ LA - en ID - JSFU_2023_16_1_a3 ER -
%0 Journal Article %A Vladlena V. Shumilova %T Spectrum of one-dimensional eigenoscillations of two-phase layered composites %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2023 %P 35-47 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a3/ %G en %F JSFU_2023_16_1_a3
Vladlena V. Shumilova. Spectrum of one-dimensional eigenoscillations of two-phase layered composites. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 1, pp. 35-47. http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a3/
[1] O.A.Oleinik, A.S.Shamaev, G.A.Yosifian, Mathematical Problems in Elasticity and Homogenization, Stud. Math. Appl., 26, North-Holland, Amsterdam, 1992
[2] V.V.Zhikov, “On an extension of the method of two-scale convergence and its applications”, Sbornik: Mathematics, 191:7 (2000), 973–1014 | DOI
[3] N.O.Babych, I.V.Kamotski, V.P.Smyshlyaev, “Homogenization of spectral problems in bounded domains with doubly high contrasts”, Networks and Heterogeneous Media, 3:3 (2008), 413–436
[4] D.A.Kosmodem'yanskii, A.S.Shamaev, “Spectral properties of some problems in mechanics of strongly inhomogeneous media”, Mechanics of Solids, 44:6 (2009), 874–906 | DOI
[5] V.V.Zhikov, S.E.Pastukhova, “On gaps in the spectrum of the operator of elasticity theory on a high contrast periodic structure”, J. Math. Sci., 188:3 (2013), 227–240 | DOI
[6] A.S.Shamaev, V.V.Shumilova, “Asymptotic behavior of the spectrum of one-dimensional vibrations in a layered medium consisting of elastic and Kelvin-Voigt viscoelastic materials”, Proc. Steklov Inst. Math., 295 (2016), 202–212 | DOI
[7] A.S.Shamaev, V.V.Shumilova, “Calculation of natural frequencies and damping coefficients of a multi-layered composite using homogenization theory”, IFAC PapersOnLine, 51:2 (2018), 126–131 | DOI
[8] A.S.Shamaev, V.V.Shumilova, “Asymptotics of the spectrum of one-dimensional natural vibrations in a layered medium consisting of viscoelastic material and viscous fluid”, Fluid Dynamics, 54:6 (2019), 749–760 | DOI
[9] A.A.Il'yushin, Continuum Mechanics, Moscow University Press, M., 1990 (Russian)
[10] A.A.Il'yushin, B.E.Pobedrya, Fundamentals of the Mathematical Theory of Thermal Viscoelasticity, Nauka, M., 1970
[11] V.V.Shumilova, “Homogenization of the system of acoustic equations for layered viscoelastic media”, J. Math. Sci., 261:3 (2022), 488–501 | DOI