Spectrum of one-dimensional eigenoscillations of two-phase layered composites
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 1, pp. 35-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectrum of one-dimensional eigenoscillations of two-phase composites with a periodic structure is studied. Their phases are isotropic elastic or viscoelastic materials, and the period consists of $2M$ alternating plane layers of the first and second phases. Equations whose roots form the spectrum are derived and their asymptotic behaviour is investigated. In particular, it is established that all finite limits of sequences of the spectrum points depend on the volume fractions of the phases and do not depend on the number $M$ and distances between the layers boundaries inside the period.
Keywords: spectrum, layered composite.
Mots-clés : eigenoscillations
@article{JSFU_2023_16_1_a3,
     author = {Vladlena V. Shumilova},
     title = {Spectrum of one-dimensional eigenoscillations of two-phase layered composites},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {35--47},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a3/}
}
TY  - JOUR
AU  - Vladlena V. Shumilova
TI  - Spectrum of one-dimensional eigenoscillations of two-phase layered composites
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2023
SP  - 35
EP  - 47
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a3/
LA  - en
ID  - JSFU_2023_16_1_a3
ER  - 
%0 Journal Article
%A Vladlena V. Shumilova
%T Spectrum of one-dimensional eigenoscillations of two-phase layered composites
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 35-47
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a3/
%G en
%F JSFU_2023_16_1_a3
Vladlena V. Shumilova. Spectrum of one-dimensional eigenoscillations of two-phase layered composites. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 1, pp. 35-47. http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a3/

[1] O.A.Oleinik, A.S.Shamaev, G.A.Yosifian, Mathematical Problems in Elasticity and Homogenization, Stud. Math. Appl., 26, North-Holland, Amsterdam, 1992

[2] V.V.Zhikov, “On an extension of the method of two-scale convergence and its applications”, Sbornik: Mathematics, 191:7 (2000), 973–1014 | DOI

[3] N.O.Babych, I.V.Kamotski, V.P.Smyshlyaev, “Homogenization of spectral problems in bounded domains with doubly high contrasts”, Networks and Heterogeneous Media, 3:3 (2008), 413–436

[4] D.A.Kosmodem'yanskii, A.S.Shamaev, “Spectral properties of some problems in mechanics of strongly inhomogeneous media”, Mechanics of Solids, 44:6 (2009), 874–906 | DOI

[5] V.V.Zhikov, S.E.Pastukhova, “On gaps in the spectrum of the operator of elasticity theory on a high contrast periodic structure”, J. Math. Sci., 188:3 (2013), 227–240 | DOI

[6] A.S.Shamaev, V.V.Shumilova, “Asymptotic behavior of the spectrum of one-dimensional vibrations in a layered medium consisting of elastic and Kelvin-Voigt viscoelastic materials”, Proc. Steklov Inst. Math., 295 (2016), 202–212 | DOI

[7] A.S.Shamaev, V.V.Shumilova, “Calculation of natural frequencies and damping coefficients of a multi-layered composite using homogenization theory”, IFAC PapersOnLine, 51:2 (2018), 126–131 | DOI

[8] A.S.Shamaev, V.V.Shumilova, “Asymptotics of the spectrum of one-dimensional natural vibrations in a layered medium consisting of viscoelastic material and viscous fluid”, Fluid Dynamics, 54:6 (2019), 749–760 | DOI

[9] A.A.Il'yushin, Continuum Mechanics, Moscow University Press, M., 1990 (Russian)

[10] A.A.Il'yushin, B.E.Pobedrya, Fundamentals of the Mathematical Theory of Thermal Viscoelasticity, Nauka, M., 1970

[11] V.V.Shumilova, “Homogenization of the system of acoustic equations for layered viscoelastic media”, J. Math. Sci., 261:3 (2022), 488–501 | DOI