Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2023_16_1_a12, author = {Brahim Mittou}, title = {Explicit formula for sums related to the generalized {Bernoulli} numbers}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {135--141}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a12/} }
TY - JOUR AU - Brahim Mittou TI - Explicit formula for sums related to the generalized Bernoulli numbers JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2023 SP - 135 EP - 141 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a12/ LA - en ID - JSFU_2023_16_1_a12 ER -
%0 Journal Article %A Brahim Mittou %T Explicit formula for sums related to the generalized Bernoulli numbers %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2023 %P 135-141 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a12/ %G en %F JSFU_2023_16_1_a12
Brahim Mittou. Explicit formula for sums related to the generalized Bernoulli numbers. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 1, pp. 135-141. http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a12/
[1] T.M Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976
[2] T.Arakawa, T.Ibukiyama, M.Kaneko, Bernoulli Numbers and Zeta Functions, Springer Japan, 2014
[3] K.-W.Chen, M.Eie, “A note on generalized Bernoulli numbers”, Pacific J. Math., 1 (2001), 41–59
[4] H.Liu, “On the mean values of Dirichlet L-function”, J. Number Theory, 147 (2015), 172–183
[5] H.Liu, W.Zhang, “On the mean value of $L(m,\chi)L(n,\chi)$ at positive integers $m,n\geq1$”, Acta Arith., 122 (2006), 51–56
[6] S.Louboutin, “Twisted quadratic moments for Dirichlet $L$-functions at $s=2$”, Publ. Math. Debrecen, 95 (2019), 393–400
[7] B.Mittou, A.Derbal, “Complex numbers similar to the generalized Bernoulli numbers and their applications”, Math. Montisnigri, L (2021), 15–26 | DOI