Explicit formula for sums related to the generalized Bernoulli numbers
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 1, pp. 135-141
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\chi$ be a Dirichlet character modulo a prime number $p\geqslant 3$ and let $B_m(\chi)$ $(m=1,2,\ldots)$ be the generalized Bernoulli numbers associated with $\chi$. Explicit formulas for the sums: $$\sum_{\substack{\chi\mod p\\\chi(-1)=+1, \chi\neq\chi_0}}B_{m}(\chi)B_{n}(\overline{\chi})\text{ and }\sum_{\substack{\chi\mod p\\ \chi(-1)=-1}}B_{m}(\chi)B_{n}(\overline{\chi})$$ are given in this paper.
Keywords:
character sum, Dirichlet $L$-function, Bernoulli number, generalized Bernoulli number.
@article{JSFU_2023_16_1_a12,
author = {Brahim Mittou},
title = {Explicit formula for sums related to the generalized {Bernoulli} numbers},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {135--141},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a12/}
}
TY - JOUR AU - Brahim Mittou TI - Explicit formula for sums related to the generalized Bernoulli numbers JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2023 SP - 135 EP - 141 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a12/ LA - en ID - JSFU_2023_16_1_a12 ER -
%0 Journal Article %A Brahim Mittou %T Explicit formula for sums related to the generalized Bernoulli numbers %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2023 %P 135-141 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a12/ %G en %F JSFU_2023_16_1_a12
Brahim Mittou. Explicit formula for sums related to the generalized Bernoulli numbers. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 1, pp. 135-141. http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a12/