The influence of amphiphilic compounds self-organization on the Fermi resonance contribution in the OH-groups stretching band formation
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 6, pp. 763-775.

Voir la notice de l'article provenant de la source Math-Net.Ru

The role of Fermi resonance (FR) in the formation of the OH-groups Raman spectra stretching band of aqueous solutions of amphiphilic compounds with different lengths of hydrocarbon radicals: ethanol and sodium octanoate, has been studied. The influence of amphiphile self-organization processes on the FR contribution to the intensity of the OH stretching band of aqueous solutions was found.
Keywords: self-organization, Fermi resonance, Raman spectroscopy, genetic algorithms.
Mots-clés : amphiphiles, aqueous solutions
@article{JSFU_2022_15_6_a9,
     author = {Ivan V. Plastinin and Tatiana A. Dolenko and Sergey A. Burikov and Sergey A. Dolenko},
     title = {The influence of amphiphilic compounds self-organization on the {Fermi} resonance contribution in the {OH-groups} stretching band formation},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {763--775},
     publisher = {mathdoc},
     volume = {15},
     number = {6},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_6_a9/}
}
TY  - JOUR
AU  - Ivan V. Plastinin
AU  - Tatiana A. Dolenko
AU  - Sergey A. Burikov
AU  - Sergey A. Dolenko
TI  - The influence of amphiphilic compounds self-organization on the Fermi resonance contribution in the OH-groups stretching band formation
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2022
SP  - 763
EP  - 775
VL  - 15
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2022_15_6_a9/
LA  - en
ID  - JSFU_2022_15_6_a9
ER  - 
%0 Journal Article
%A Ivan V. Plastinin
%A Tatiana A. Dolenko
%A Sergey A. Burikov
%A Sergey A. Dolenko
%T The influence of amphiphilic compounds self-organization on the Fermi resonance contribution in the OH-groups stretching band formation
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 763-775
%V 15
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_6_a9/
%G en
%F JSFU_2022_15_6_a9
Ivan V. Plastinin; Tatiana A. Dolenko; Sergey A. Burikov; Sergey A. Dolenko. The influence of amphiphilic compounds self-organization on the Fermi resonance contribution in the OH-groups stretching band formation. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 6, pp. 763-775. http://geodesic.mathdoc.fr/item/JSFU_2022_15_6_a9/

[1] T. Bhardwaj et al., “Thermo-acoustical analysis of sodium dodecyl sulfate: Fluconazole (antifungal drug) based micellar system in hydro-ethanol solutions for potential drug topical application”, J. Chem. Thermodyn., 78 (2014), 1–6 | DOI

[2] B.-J. Kim et al., “Synthesis and characterization of polyaniline nanoparticles in SDS micellar solutions”, Synth. Met., 122:2 (2001), 297–304 | DOI

[3] Q. Ye et al., “Maternal short and medium chain fatty acids supply during early pregnancy improves embryo survival through enhancing progesterone synthesis in rats”, J. Nutr. Biochem., 69 (2019), 98–107 | DOI

[4] A.R. Elman et al., “Synthesis of products labeled with the 13C isotope for medical diagnostics”, Russian Chemical Journal, 57:5 (2013), 3 (in Russian)

[5] J.B. Rosenholm, Larsson K., Dinh-Nguyen N., “A Raman spectroscopy study of micellar structures in ternary systems of water-sodium octanoate-pentanol/decanol”, J. Colloid Polym. Sci., 255:11 (1977), 1098–1109 | DOI

[6] T.A. Dolenko et al, “Raman spectroscopy of micellization-induced liquid–liquid fluctuations in sodium dodecyl sulfate aqueous solutions”, J. Mol. Liq., 204 (2015), 44–49 | DOI

[7] M. Picquart, G. Lacrampe, “Raman spectra of aqueous sodium octanoate solutions: solute and solvent study”, J. Phys. Chem., 96:23 (1992), 9114–9120 | DOI

[8] I.V. Plastinin, S.A. Burikov, T.A. Dolenko, “Laser diagnostics of reverse microemulsions: Influence of the size and shape of reverse micelles on the Raman spectrum on the example of water/AOT/cyclohexane system”, J. Mol. Liq., 325 (2021), 115153 | DOI

[9] I.V. Plastinin, S.A. Burikov, T. ADolenko, “Laser diagnostics of self-organization of amphiphiles in aqueous solutions on the example of sodium octanoate”, J. Mol. Liq., 317 (2020), 113958 | DOI

[10] I.V. Plastinin et al., “Features of self-organization of sodium dodecyl sulfate in water-ethanol solutions: Theory and vibrational spectroscopy”, J. Mol. Liq., 298 (2020), 112053 | DOI

[11] I.V. Plastinin et al., “Manifestation of Fermi resonance in Raman spectra of micellar aqueous solutions of sodium octanoate”, Proc. SPIE, 11458, 2020, 114580V | DOI

[12] I.V. Plastinin et al., “The Role of Fermi and Darling-Dennison Resonances in the Formation of the Raman Spectra of Water and Water-Ethanol Solutions”, Bull. Russ. Acad. Sci. Phys., 83:3 (2019), 324–329 | DOI

[13] A. Sokolowska, Z. Kecki, “Inter-and intra-molecular coupling and Fermi resonance in the Raman spectra of liquid water”, J. Raman Spectrosc., 17:1 (1986), 29–33 | DOI

[14] A.A. Kananenka, J.L. Skinner, “Fermi resonance in OH-stretch vibrational spectroscopy of liquid water and the water hexamer”, J. Chem. Phys., 148:24 (2018), 244107 | DOI

[15] T.A. Dolenko et al., “Raman Spectroscopy of Water-Ethanol Solutions: The Estimation of Hydrogen Bonding Energy and the Appearance of Clathrate-like Structures in Solutions”, J. Phys. Chem. A, 119:44 (2015), 10806–10815 | DOI

[16] E. Blanco et al., “A comparative study of the physicochemical properties of perfluorinated and hydrogenated amphiphiles”, J. Colloid Interface Sci., 288:1 (2005), 247–260 | DOI

[17] A. Gonzalez-Perez et al., “Thermodynamics of self-assembly of sodium octanoate: Comparison with a fully fluorinated counterpart”, Mol. Phys., 101:21 (2003), 3185–3195 | DOI

[18] M.F. Vuks, L.V. Shurupova, “Light scattering and phase transitions in aqueous solutions of simple alcohols”, Optics and spectroscopy, 40:1 (1976), 154–159 (in Russian)

[19] L.V. Shurupova, “Some Features of the Temperature Behavior of Additional Scattered Light Peaks”, Vestnik SPbGU, 4:25 (1994), 16–25 (in Russian)

[20] K. Takaizumi, T. Wakabayashi, “The freezing process in methanol-, ethanol-, and propanol-water systems as revealed by differential scanning calorimetry”, J. Solution Chem., 26:10 (1997), 927–939 | DOI

[21] K. Takaizumi, “A Curious Phenomenon in the Freezing-Thawing Process of Aqueous Ethanol Solution”, J. Solution Chem., 34:5 (2005), 597–612 | DOI

[22] Y.M. Zelenin, “Effect of Pressure on Clathrate Formation in a Water-Ethanol System”, J. Struct. Chem., 44:44 (2003), 130–136 | DOI

[23] S. Burikov et al., “Raman and IR spectroscopy research on hydrogen bonding in water–ethanol systems”, Mol. Phys., 108:18 (2010), 2427–2436 | DOI

[24] M.H. Brooker, O.F. Nielsen, Praestgaard E., “Assessment of correction procedures for reduction of Raman spectra”, J. Raman Spectrosc, 19:2 (1988), 71–78 | DOI

[25] M.P. Lisitsa, A.M. Yaremko, Fermi Resonance, Naukova Dumka, Kyiv, 1984 (in Russian)

[26] I.V. Plastinin et al., “Contribution of Fermi and Darling-Dennison resonances to the formation of Raman spectra of water and water-ethanol solutions”, J. Raman Spectrosc, 48:9 (2017), 1235–1242 | DOI

[27] R. Lemus et al., “Spectroscopic Description of H$_2$O in the su(2) Vibron Model Approximation”, J. Mol. Spectrosc., 214:1 (2002), 52–68 | DOI

[28] A.D. Bykov, K.V. Kalinin, “Calculation of vibrational energy levels of water molecule by summing divergent perturbation theory series”, Opt. Spectrosc., 111:3 (2011), 367 | DOI

[29] S.V. Krasnoshchekov, E. VIsayeva, N.F. Stepanov, “Criteria for first-and second-order vibrational resonances and correct evaluation of the Darling-Dennison resonance coefficients using the canonical Van Vleck perturbation theory”, J. Chem. Phys., 141:23 (2014), 234114 | DOI