Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2022_15_6_a9, author = {Ivan V. Plastinin and Tatiana A. Dolenko and Sergey A. Burikov and Sergey A. Dolenko}, title = {The influence of amphiphilic compounds self-organization on the {Fermi} resonance contribution in the {OH-groups} stretching band formation}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {763--775}, publisher = {mathdoc}, volume = {15}, number = {6}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_6_a9/} }
TY - JOUR AU - Ivan V. Plastinin AU - Tatiana A. Dolenko AU - Sergey A. Burikov AU - Sergey A. Dolenko TI - The influence of amphiphilic compounds self-organization on the Fermi resonance contribution in the OH-groups stretching band formation JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2022 SP - 763 EP - 775 VL - 15 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2022_15_6_a9/ LA - en ID - JSFU_2022_15_6_a9 ER -
%0 Journal Article %A Ivan V. Plastinin %A Tatiana A. Dolenko %A Sergey A. Burikov %A Sergey A. Dolenko %T The influence of amphiphilic compounds self-organization on the Fermi resonance contribution in the OH-groups stretching band formation %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2022 %P 763-775 %V 15 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2022_15_6_a9/ %G en %F JSFU_2022_15_6_a9
Ivan V. Plastinin; Tatiana A. Dolenko; Sergey A. Burikov; Sergey A. Dolenko. The influence of amphiphilic compounds self-organization on the Fermi resonance contribution in the OH-groups stretching band formation. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 6, pp. 763-775. http://geodesic.mathdoc.fr/item/JSFU_2022_15_6_a9/
[1] T. Bhardwaj et al., “Thermo-acoustical analysis of sodium dodecyl sulfate: Fluconazole (antifungal drug) based micellar system in hydro-ethanol solutions for potential drug topical application”, J. Chem. Thermodyn., 78 (2014), 1–6 | DOI
[2] B.-J. Kim et al., “Synthesis and characterization of polyaniline nanoparticles in SDS micellar solutions”, Synth. Met., 122:2 (2001), 297–304 | DOI
[3] Q. Ye et al., “Maternal short and medium chain fatty acids supply during early pregnancy improves embryo survival through enhancing progesterone synthesis in rats”, J. Nutr. Biochem., 69 (2019), 98–107 | DOI
[4] A.R. Elman et al., “Synthesis of products labeled with the 13C isotope for medical diagnostics”, Russian Chemical Journal, 57:5 (2013), 3 (in Russian)
[5] J.B. Rosenholm, Larsson K., Dinh-Nguyen N., “A Raman spectroscopy study of micellar structures in ternary systems of water-sodium octanoate-pentanol/decanol”, J. Colloid Polym. Sci., 255:11 (1977), 1098–1109 | DOI
[6] T.A. Dolenko et al, “Raman spectroscopy of micellization-induced liquid–liquid fluctuations in sodium dodecyl sulfate aqueous solutions”, J. Mol. Liq., 204 (2015), 44–49 | DOI
[7] M. Picquart, G. Lacrampe, “Raman spectra of aqueous sodium octanoate solutions: solute and solvent study”, J. Phys. Chem., 96:23 (1992), 9114–9120 | DOI
[8] I.V. Plastinin, S.A. Burikov, T.A. Dolenko, “Laser diagnostics of reverse microemulsions: Influence of the size and shape of reverse micelles on the Raman spectrum on the example of water/AOT/cyclohexane system”, J. Mol. Liq., 325 (2021), 115153 | DOI
[9] I.V. Plastinin, S.A. Burikov, T. ADolenko, “Laser diagnostics of self-organization of amphiphiles in aqueous solutions on the example of sodium octanoate”, J. Mol. Liq., 317 (2020), 113958 | DOI
[10] I.V. Plastinin et al., “Features of self-organization of sodium dodecyl sulfate in water-ethanol solutions: Theory and vibrational spectroscopy”, J. Mol. Liq., 298 (2020), 112053 | DOI
[11] I.V. Plastinin et al., “Manifestation of Fermi resonance in Raman spectra of micellar aqueous solutions of sodium octanoate”, Proc. SPIE, 11458, 2020, 114580V | DOI
[12] I.V. Plastinin et al., “The Role of Fermi and Darling-Dennison Resonances in the Formation of the Raman Spectra of Water and Water-Ethanol Solutions”, Bull. Russ. Acad. Sci. Phys., 83:3 (2019), 324–329 | DOI
[13] A. Sokolowska, Z. Kecki, “Inter-and intra-molecular coupling and Fermi resonance in the Raman spectra of liquid water”, J. Raman Spectrosc., 17:1 (1986), 29–33 | DOI
[14] A.A. Kananenka, J.L. Skinner, “Fermi resonance in OH-stretch vibrational spectroscopy of liquid water and the water hexamer”, J. Chem. Phys., 148:24 (2018), 244107 | DOI
[15] T.A. Dolenko et al., “Raman Spectroscopy of Water-Ethanol Solutions: The Estimation of Hydrogen Bonding Energy and the Appearance of Clathrate-like Structures in Solutions”, J. Phys. Chem. A, 119:44 (2015), 10806–10815 | DOI
[16] E. Blanco et al., “A comparative study of the physicochemical properties of perfluorinated and hydrogenated amphiphiles”, J. Colloid Interface Sci., 288:1 (2005), 247–260 | DOI
[17] A. Gonzalez-Perez et al., “Thermodynamics of self-assembly of sodium octanoate: Comparison with a fully fluorinated counterpart”, Mol. Phys., 101:21 (2003), 3185–3195 | DOI
[18] M.F. Vuks, L.V. Shurupova, “Light scattering and phase transitions in aqueous solutions of simple alcohols”, Optics and spectroscopy, 40:1 (1976), 154–159 (in Russian)
[19] L.V. Shurupova, “Some Features of the Temperature Behavior of Additional Scattered Light Peaks”, Vestnik SPbGU, 4:25 (1994), 16–25 (in Russian)
[20] K. Takaizumi, T. Wakabayashi, “The freezing process in methanol-, ethanol-, and propanol-water systems as revealed by differential scanning calorimetry”, J. Solution Chem., 26:10 (1997), 927–939 | DOI
[21] K. Takaizumi, “A Curious Phenomenon in the Freezing-Thawing Process of Aqueous Ethanol Solution”, J. Solution Chem., 34:5 (2005), 597–612 | DOI
[22] Y.M. Zelenin, “Effect of Pressure on Clathrate Formation in a Water-Ethanol System”, J. Struct. Chem., 44:44 (2003), 130–136 | DOI
[23] S. Burikov et al., “Raman and IR spectroscopy research on hydrogen bonding in water–ethanol systems”, Mol. Phys., 108:18 (2010), 2427–2436 | DOI
[24] M.H. Brooker, O.F. Nielsen, Praestgaard E., “Assessment of correction procedures for reduction of Raman spectra”, J. Raman Spectrosc, 19:2 (1988), 71–78 | DOI
[25] M.P. Lisitsa, A.M. Yaremko, Fermi Resonance, Naukova Dumka, Kyiv, 1984 (in Russian)
[26] I.V. Plastinin et al., “Contribution of Fermi and Darling-Dennison resonances to the formation of Raman spectra of water and water-ethanol solutions”, J. Raman Spectrosc, 48:9 (2017), 1235–1242 | DOI
[27] R. Lemus et al., “Spectroscopic Description of H$_2$O in the su(2) Vibron Model Approximation”, J. Mol. Spectrosc., 214:1 (2002), 52–68 | DOI
[28] A.D. Bykov, K.V. Kalinin, “Calculation of vibrational energy levels of water molecule by summing divergent perturbation theory series”, Opt. Spectrosc., 111:3 (2011), 367 | DOI
[29] S.V. Krasnoshchekov, E. VIsayeva, N.F. Stepanov, “Criteria for first-and second-order vibrational resonances and correct evaluation of the Darling-Dennison resonance coefficients using the canonical Van Vleck perturbation theory”, J. Chem. Phys., 141:23 (2014), 234114 | DOI