Heavy tail index estimator through weighted least-squares rank regression
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 6, pp. 797-805.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we proposed a weighted least square estimator based method to estimate the shape parameter of the Frechet distribution. We show the performance of the proposed estimator in a simulation study, it is found that the considered weighted estimation method shows better performance than the maximum likelihood estimation. Maximum product of spacing estimation and least-squares in terms of bias and root mean square error for most of the considered sample sizes. In addition, a real example from Danish data is provided to demonstrate the performance of the considered method.
Keywords: weighted least-squares regression, Rank regression, shape parameter.
Mots-clés : Frechet distribution, Monte Carlo simulation
@article{JSFU_2022_15_6_a12,
     author = {Zahia Khemissi and Brahim Brahimi and Fatah Benatia},
     title = {Heavy tail index estimator through weighted least-squares rank regression},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {797--805},
     publisher = {mathdoc},
     volume = {15},
     number = {6},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_6_a12/}
}
TY  - JOUR
AU  - Zahia Khemissi
AU  - Brahim Brahimi
AU  - Fatah Benatia
TI  - Heavy tail index estimator through weighted least-squares rank regression
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2022
SP  - 797
EP  - 805
VL  - 15
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2022_15_6_a12/
LA  - en
ID  - JSFU_2022_15_6_a12
ER  - 
%0 Journal Article
%A Zahia Khemissi
%A Brahim Brahimi
%A Fatah Benatia
%T Heavy tail index estimator through weighted least-squares rank regression
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 797-805
%V 15
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_6_a12/
%G en
%F JSFU_2022_15_6_a12
Zahia Khemissi; Brahim Brahimi; Fatah Benatia. Heavy tail index estimator through weighted least-squares rank regression. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 6, pp. 797-805. http://geodesic.mathdoc.fr/item/JSFU_2022_15_6_a12/

[1] R. Adrain, “Research concerning the probabilities of the errors which happen in making observations”, The Analyst, or Mathematical Museum, v. I, William P. Farrand and Co, Philadelphia, 1808, Article XIV, 93–109

[2] M.S. Annasaheb, C.B. Girish, “Comparison of three estimation methods for Frechet distribution”, International Journal of Multidisciplinary Research and Development, 5:1 (2018), 38–41

[3] A. Bernard, E.C. Bosi-Levenbach, “The plotting of observations on probability paper”, Stat. Neederlandica, 7 (1953), 163–173

[4] B. Brahimi, D. Meraghni, A. Necir, D. Yahia, “A bias-reduced estimator for the mean of a heavy-tailed distribution with an infinite second moment”, Journal of Statistical Planning and Inference, 143 (2013), 1064–1081

[5] R.M. Engeman, T.J. Keefe, “On generalized least squares estimation of the Weibull distribution”, Communications in Statistics. Theory and Methods, 11 (1982), 2181–2193 | DOI

[6] C. FGauss, Theory of the Combination of Observations Least Subject to Errors, Translated by G. W. Stewart, v. 1, 2, Society for Industrial and Applied Mathematics, 1795 (Supplement)

[7] W.L. Hung, Weighted least squares estimation of the shape parameter of the Weibull distribution, Quality and Reliability Engineering International, Wiley Online Library, 2001

[8] R. Ihaka, R. Gentleman, “R: a language for data analysis and graphics”, Journal of Computational and Graphical Statistics, 5 (1996), 299–314 | DOI

[9] A.F. Jenkinson, “The frequency distribution of the annual maximum (or minimum) values of meteorological elements”, Quarterly Journal of the Royal Meteorological Society, 81 (1955), 158–171

[10] Y.M. Kantar, I. Usta, Ş. Acitaş, “A Monte Carlo Simulation Study on Partially Adaptive Estimators of linear Regression Models”, Journal of Applied Statistics, 2011

[11] R. Koenker, G. Bassett, “Regression quantiles”, Econometrica: Journal of the Econometric Society, 46:1 (1978), 33–50

[12] A.M. Legendre, “Nouvelles méthodes pour la dé termination des orbites des comètes”, 'Sur la Mé thode des moindres quarrés', Appendix, Paris, 1805, 72–80

[13] H.L. Lu, S.H. Tao, “The Estimation of Pareto distribution by a weighted least square method”, Quality Quantity, Springer, 2007

[14] H.L. Lu, C.H. Chen, J.W. Wu, A Note on weighted least-squares estimation of the shape parameter of the Weibull distribution, Quality and Reliability Engineering, Wiley Online Library, 2004

[15] H.J. Malik, “Estimation of the parameters of the Pareto distribution”, Metrika: International Journal for Theoretical and Applied Statistics, 15 (1970), 126–132

[16] L.F. Zhang, M. Xie, L.C. Tang, “A study of two estimation approaches for parameters of Weibull distribution based on WPP”, Reliability Engineering System Safety, Elsevier, 2007

[17] J.M.V. Zyl, “A Median Regression Model to Estimate the Parameters of the Three-parameter Generalized Pareto Distribution”, Communications in Statistics–Simulation and Computation, 41 (2012), 544–553 | DOI

[18] J.M.V. Zyl, R. Schall, “Parameter estimation through weighted least-squares rank regression with specific reference to the Weibull and Gumbel distributions”, Communications in Statistics–Simulation and Computation, 41 (2012), 1654–1666 | DOI