Heavy tail index estimator through weighted least-squares rank regression
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 6, pp. 797-805
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we proposed a weighted least square estimator based method to estimate the shape parameter of the Frechet distribution. We show the performance of the proposed estimator in a simulation study, it is found that the considered weighted estimation method shows better performance than the maximum likelihood estimation. Maximum product of spacing estimation and least-squares in terms of bias and root mean square error for most of the considered sample sizes. In addition, a real example from Danish data is provided to demonstrate the performance of the considered method.
Keywords:
weighted least-squares regression, Rank regression, shape parameter.
Mots-clés : Frechet distribution, Monte Carlo simulation
Mots-clés : Frechet distribution, Monte Carlo simulation
@article{JSFU_2022_15_6_a12,
author = {Zahia Khemissi and Brahim Brahimi and Fatah Benatia},
title = {Heavy tail index estimator through weighted least-squares rank regression},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {797--805},
publisher = {mathdoc},
volume = {15},
number = {6},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_6_a12/}
}
TY - JOUR AU - Zahia Khemissi AU - Brahim Brahimi AU - Fatah Benatia TI - Heavy tail index estimator through weighted least-squares rank regression JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2022 SP - 797 EP - 805 VL - 15 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2022_15_6_a12/ LA - en ID - JSFU_2022_15_6_a12 ER -
%0 Journal Article %A Zahia Khemissi %A Brahim Brahimi %A Fatah Benatia %T Heavy tail index estimator through weighted least-squares rank regression %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2022 %P 797-805 %V 15 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2022_15_6_a12/ %G en %F JSFU_2022_15_6_a12
Zahia Khemissi; Brahim Brahimi; Fatah Benatia. Heavy tail index estimator through weighted least-squares rank regression. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 6, pp. 797-805. http://geodesic.mathdoc.fr/item/JSFU_2022_15_6_a12/