Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2022_15_6_a12, author = {Zahia Khemissi and Brahim Brahimi and Fatah Benatia}, title = {Heavy tail index estimator through weighted least-squares rank regression}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {797--805}, publisher = {mathdoc}, volume = {15}, number = {6}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_6_a12/} }
TY - JOUR AU - Zahia Khemissi AU - Brahim Brahimi AU - Fatah Benatia TI - Heavy tail index estimator through weighted least-squares rank regression JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2022 SP - 797 EP - 805 VL - 15 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2022_15_6_a12/ LA - en ID - JSFU_2022_15_6_a12 ER -
%0 Journal Article %A Zahia Khemissi %A Brahim Brahimi %A Fatah Benatia %T Heavy tail index estimator through weighted least-squares rank regression %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2022 %P 797-805 %V 15 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2022_15_6_a12/ %G en %F JSFU_2022_15_6_a12
Zahia Khemissi; Brahim Brahimi; Fatah Benatia. Heavy tail index estimator through weighted least-squares rank regression. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 6, pp. 797-805. http://geodesic.mathdoc.fr/item/JSFU_2022_15_6_a12/
[1] R. Adrain, “Research concerning the probabilities of the errors which happen in making observations”, The Analyst, or Mathematical Museum, v. I, William P. Farrand and Co, Philadelphia, 1808, Article XIV, 93–109
[2] M.S. Annasaheb, C.B. Girish, “Comparison of three estimation methods for Frechet distribution”, International Journal of Multidisciplinary Research and Development, 5:1 (2018), 38–41
[3] A. Bernard, E.C. Bosi-Levenbach, “The plotting of observations on probability paper”, Stat. Neederlandica, 7 (1953), 163–173
[4] B. Brahimi, D. Meraghni, A. Necir, D. Yahia, “A bias-reduced estimator for the mean of a heavy-tailed distribution with an infinite second moment”, Journal of Statistical Planning and Inference, 143 (2013), 1064–1081
[5] R.M. Engeman, T.J. Keefe, “On generalized least squares estimation of the Weibull distribution”, Communications in Statistics. Theory and Methods, 11 (1982), 2181–2193 | DOI
[6] C. FGauss, Theory of the Combination of Observations Least Subject to Errors, Translated by G. W. Stewart, v. 1, 2, Society for Industrial and Applied Mathematics, 1795 (Supplement)
[7] W.L. Hung, Weighted least squares estimation of the shape parameter of the Weibull distribution, Quality and Reliability Engineering International, Wiley Online Library, 2001
[8] R. Ihaka, R. Gentleman, “R: a language for data analysis and graphics”, Journal of Computational and Graphical Statistics, 5 (1996), 299–314 | DOI
[9] A.F. Jenkinson, “The frequency distribution of the annual maximum (or minimum) values of meteorological elements”, Quarterly Journal of the Royal Meteorological Society, 81 (1955), 158–171
[10] Y.M. Kantar, I. Usta, Ş. Acitaş, “A Monte Carlo Simulation Study on Partially Adaptive Estimators of linear Regression Models”, Journal of Applied Statistics, 2011
[11] R. Koenker, G. Bassett, “Regression quantiles”, Econometrica: Journal of the Econometric Society, 46:1 (1978), 33–50
[12] A.M. Legendre, “Nouvelles méthodes pour la dé termination des orbites des comètes”, 'Sur la Mé thode des moindres quarrés', Appendix, Paris, 1805, 72–80
[13] H.L. Lu, S.H. Tao, “The Estimation of Pareto distribution by a weighted least square method”, Quality Quantity, Springer, 2007
[14] H.L. Lu, C.H. Chen, J.W. Wu, A Note on weighted least-squares estimation of the shape parameter of the Weibull distribution, Quality and Reliability Engineering, Wiley Online Library, 2004
[15] H.J. Malik, “Estimation of the parameters of the Pareto distribution”, Metrika: International Journal for Theoretical and Applied Statistics, 15 (1970), 126–132
[16] L.F. Zhang, M. Xie, L.C. Tang, “A study of two estimation approaches for parameters of Weibull distribution based on WPP”, Reliability Engineering System Safety, Elsevier, 2007
[17] J.M.V. Zyl, “A Median Regression Model to Estimate the Parameters of the Three-parameter Generalized Pareto Distribution”, Communications in Statistics–Simulation and Computation, 41 (2012), 544–553 | DOI
[18] J.M.V. Zyl, R. Schall, “Parameter estimation through weighted least-squares rank regression with specific reference to the Weibull and Gumbel distributions”, Communications in Statistics–Simulation and Computation, 41 (2012), 1654–1666 | DOI