Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2022_15_6_a11, author = {Aknazar B. Khasanov and Bazar A. Babajanov and Dilshod O. Atajonov}, title = {On the integration of the periodic {Camassa--Holm} equation with a self-consistent source}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {785--796}, publisher = {mathdoc}, volume = {15}, number = {6}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_6_a11/} }
TY - JOUR AU - Aknazar B. Khasanov AU - Bazar A. Babajanov AU - Dilshod O. Atajonov TI - On the integration of the periodic Camassa--Holm equation with a self-consistent source JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2022 SP - 785 EP - 796 VL - 15 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2022_15_6_a11/ LA - en ID - JSFU_2022_15_6_a11 ER -
%0 Journal Article %A Aknazar B. Khasanov %A Bazar A. Babajanov %A Dilshod O. Atajonov %T On the integration of the periodic Camassa--Holm equation with a self-consistent source %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2022 %P 785-796 %V 15 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2022_15_6_a11/ %G en %F JSFU_2022_15_6_a11
Aknazar B. Khasanov; Bazar A. Babajanov; Dilshod O. Atajonov. On the integration of the periodic Camassa--Holm equation with a self-consistent source. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 6, pp. 785-796. http://geodesic.mathdoc.fr/item/JSFU_2022_15_6_a11/
[1] R. Camassa, D. Holm, “An integrable shallow water equation with peaked solitons”, Phys. Rev. Lett., 71 (1993), 1661–1664 | DOI
[2] R. Johnson, “Camassa–Holm Korteweg-de Vries and related models for water waves”, J. Fluid Mech., 455 (2002), 63–82 | DOI
[3] R. Johnson, “The Camassa–Holm equation for water waves moving over a shear flow”, Fluid Dynam. Res., 33 (2003), 97–111 | DOI
[4] R. Johnson, “The classical problem of water waves: a reservoir of integrable and nearly-integrable equations”, J. Nonlinear Math. Phys., 10 (2003), 72–92 | DOI
[5] M.S. Alber, R. Camassa, D.D. Holm, J.E. Marsden, “The geometry of peaked solitons and billiard solutions of a class of integrable PDE's”, Lett. Math. Phys., 32 (1994), 137–151 | DOI
[6] A. Constantin, “Existence of permanent and breaking waves for a shallow water equation: a geometric approach”, Ann. Inst. Fourier (Grenoble), 50 (2000), 321–362 | DOI
[7] G. Misiolek, “A shallow water equation as a geodesic flow on the Bott-Virasoro group”, J. Geom.Phys., 24 (1998), 203–208 | DOI
[8] M.S. Alber, R. Camassa, D.D. Holm, J.E. Marsden, “On the link between umbilic geodesics and soliton solutions of nonlinear PDE's”, Proc. Roy. Soc. London Ser. A, 450 (1995), 677–692 | DOI
[9] A. Constantin, V.S. Gerdjikov, R.I. Ivanov, “Inverse scattering transform for the Camassa-Holm equation”, Inverse Problems, 22 (2006), 2197–2207 | DOI
[10] F. Gesztesy, H. Holden, “Real-valued algebro-geometric solutions of the Camassa-Holm hierarchy”, Phil. Trans. R. Soc. A, 366 (2008), 1025–1054 | DOI
[11] V. Novikov, “Generalisations of the Camassa-Holm equation”, Journal of Physics A Mathematical and Theoretical, 42 (2009), 1–11 | DOI
[12] G. Rodriguez-Blanco, “On the Cauchy Problem for the Camassa–Holm Equation”, Nonlinear Anal., 46 (2001), 309–327 | DOI
[13] G. Yergaliyeva, T. Myrzakul, G. Nugmanova, R. Myrzakulov, “Camassa-Holm and Myrzakulov-CIV Equations with Self-Consistent Sources: Geometry and Peakon Solutions”, Geometry, Integrability and Quantization, 21 (2020), 310–319 | DOI
[14] R.I. Ivanov, “Equations of the Camassa-Holm Hierarchy”, TMF, 160 (2009), 93–101 | DOI
[15] Xinhui Lu, Aiyong Chen, Tongjie Deng, “Orbital Stability of Peakons for a Generalized Camassa-Holm Equation”, Journal of Applied Mathematics and Physics, 7 (2019), 2200–2211 | DOI
[16] Z. Guo, X. Liu, C. Qu, “Stability of Peakons for the Generalized Modified Camassa-Holm Equation”, Journal of Differential Equations, 266 (2019), 7749–7779 | DOI
[17] J.L. Yin, X.H. Fan, “Orbital Stability of Floating Periodic Peakons for the Camassa-Holm Equation”, Nonlinear Analysis, 11 (2009), 4021–4026 | DOI
[18] E. Korotayev, “Inverse Spectral Problem for the Periodic Camassa-Holm Equation”, Journal of Nonlinear Mathematical Physics, 11 (2004), 499–507 | DOI
[19] V.K. Melnikov, “A direct method for deriving a multisoliton solution for the problem of interaction of waves on the x,y plane”, Commun. Math. Phys., 112 (1987), 63952 | DOI
[20] V.K. Melnikov, “Integration method of the Korteweg-de Vries equation with a self-consistent source”, Phys. Lett. A, 133 (1998), 4936 | DOI
[21] V.K. Melnikov, “Integration of the nonlinear Schroedinger equation with a self-consistent source”, Commun. Math. Phys., 137 (1991), 359–381 | DOI
[22] V.K. Melnikov, “Integration of the Korteweg-de Vries equation with a source”, Inverse Problems, 6 (1990), 233–246 | DOI
[23] J. Leon, A. Latifi, “Solution of an initial-boundary value problem for coupled nonlinear waves”, J. Phys.A: Math. Gen., 23 (1990), 1385–1403 | DOI
[24] C. Claude, A. Latifi, J. Leon, “Nonliear resonant scattering and plasma instability: an integrable model”, J. Math. Phys., 32 (1991), 3321–3330 | DOI
[25] Y. Huang, Y. Yao, Y. Zeng, “On Camassa-Holm equation with self-consistent sources and its solutions”, Communications in theoretical physics, 53 (2010), 403–412 | DOI
[26] I.I. Baltaeva, G.U. Urazboev, “About the Camassa-Holm equation with a self-consistent source”, Ufa mathematical journal, 3 (2011), 10–18
[27] Y. Zeng, W.X. Ma, Runliang Lin, “Integration of the soliton hierarchy with self-consistent sources”, J. Math. Phys., 41 (2000), 5453–5488 | DOI
[28] Y.B. Zeng, Y.J. Shao, W.M. Xue, “Negaton and positon solutions of the soliton equation with self-consistent sources”, J. Phys. A: Math. Gen., 36 (2003), 5035–5043 | DOI
[29] D.J. Zhang, D.Y. Chen, “The N-soliton solutions of the sine-Gordon equation with self-consistent sources”, Physics A, 321 (2003), 467–481 | DOI
[30] P.G. Grinevich, I.A. Taimanov, “Spectral Conservation Laws for Periodic Nonlinear Equations of the Melnikov Type”, Amer. Math. Soc. Transl. Ser., 224 (2008), 125–138, arXiv: 0801.4143
[31] A. Cabada, A. Yakhshimuratov, “The system of Kaup equations with a self-consistent source in the class of periodic functions”, Zh. Mat. Piz., Anal., Geom., 9 (2013), 287–303
[32] G. Urazboev, A. Babadjanova, “On the integration of the matrix modified Korteweg-de Vries equation with self-consistent source”, Tamkang J. Math., 50 (2019), 281–291 | DOI
[33] A.B. Yakhshimuratov, “The nonlinear Schrodinger equation with a self-consistent source in the class of periodic functions”, Math. Phys., Anal. and Geom., 14 (2011), 153–169 | DOI
[34] A.B. Yakhshimuratov, B.A. Babajanov, “Integration of equation of Kaup system kind with a self-consistent source in the class of periodic functions”, Ufa Math. J., 12 (2020), 104–114 | DOI
[35] A.B. Khasanov, A.B. Yakhshimuratov, “The Korteweg-de Vries equation with a self-consistent source in the class of periodic functions”, Theor. Math. Phys., 164 (2010), 1008–1015 | DOI
[36] B.A. Babajanov, M. Fechkan, G. Urazbaev, “On the periodic Toda lattice with self-consistent source”, Commun. Nonlinear Sci. Numer. Simul., 22 (2015), 379–388 | DOI
[37] B.A. Babajanov, M. Fechkan, G. Urazbaev, “On the periodic Toda lattice hierarchy with an integral source”, Comm. Nonlinear Sci. Numer. Simul., 52 (2017), 110–123 | DOI
[38] B.A. Babajanov, A.B. Khasanov, “Periodic Toda chain with an integral source”, Theoret. Math. Phys., 184 (2015), 1114–1128 | DOI
[39] A. Yakhshimuratov, T. Kriecherbauer, B. Babajanov, “On the construction and integration of a hierarchy for the Kaup system with a self-consistent source in the class of periodic functions”, Journal of Mathematical Physics, Analysis, Geometry, 17 (2021), 233–257 | DOI
[40] A. Constantin, H.P. Mckean, “A shallow water equation on the circle”, Comm.Pure. Appl. Math., 52 (1999), 949–982 | 3.0.CO;2-D class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[41] A. Constantin, “On the spectral problem for the periodic Camassa-Holm equation”, J. Math. Anal. Appl., 210 (1997), 215–230 | DOI
[42] A. Constantin, “A general-weighted Sturm-Liouville problem”, Ann. Scuola Norm. Sup. Pisa, 24 (1997), 767–782
[43] A. Constantin, “On the inverse spectral problem for the Camassa-Holm equation”, J. Funct. Anal., 155 (1998), 352–363 | DOI