Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2022_15_5_a8, author = {Natalya L. Sobachkina}, title = {Unsteady flow of two binary mixtures in a cylindrical capillary with changes in the internal energy of the interface}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {623--634}, publisher = {mathdoc}, volume = {15}, number = {5}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a8/} }
TY - JOUR AU - Natalya L. Sobachkina TI - Unsteady flow of two binary mixtures in a cylindrical capillary with changes in the internal energy of the interface JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2022 SP - 623 EP - 634 VL - 15 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a8/ LA - en ID - JSFU_2022_15_5_a8 ER -
%0 Journal Article %A Natalya L. Sobachkina %T Unsteady flow of two binary mixtures in a cylindrical capillary with changes in the internal energy of the interface %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2022 %P 623-634 %V 15 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a8/ %G en %F JSFU_2022_15_5_a8
Natalya L. Sobachkina. Unsteady flow of two binary mixtures in a cylindrical capillary with changes in the internal energy of the interface. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 5, pp. 623-634. http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a8/
[1] J.F. Harper, M.D. Woor, J.R.A. Pearson, “The effect of the variation of surface tension with temperature on the motion of drops and bubbles”, J. Fluid Mech., 27 (1967), 361 | DOI
[2] Ch. Sore, “Sur l'etat d'ecuilibre que prend au point de vue de sa concentration une dissolution saline primitivement homohene dont deux parties sont portees a des temperatures differentes”, Arch Sci. Phis. Nat., 2 (1879), 48–61
[3] L.G. Napolitano, “Plane Marangoni-Poiseulle flow two immiscible fluids”, Acta Astronautica, 7:4-5 (1980), 461–478 | DOI | Zbl
[4] V.K. Andreev, V.E. Zakhvataev, E.A. Ryabitsky, Thermocapillary instability, Nauka, Novosibirsk, 2000 (in Russian) | MR
[5] F.E. Torres, H. Elborzheimer, “Temperature gradients and drag effects produced by convections of interfacial internal energy around bubbles”, Phys. Fluids A, 5:3 (1993), 537–549 | DOI | Zbl
[6] V.K. Andreev, M.E. Pagdenko, “Two-dimensional stationary flow of immiscible fluids in a cylinder taking into account the internal energy of the interface”, Journal of physics: Conference series, 1268 (2019), 012045 | DOI | MR
[7] E.P. Magdenko, “The influence of changes in the internal energy of the interface on a two-layer flow in a cylinder”, Journal of Siberian Federal University. Mathematics and Physics, 12:2 (2019), 213–221 | MR | Zbl
[8] E.N. Lemeshkova, “Two-dimensional plane thermocapillary flow of two immiscible liquids”, Journal of Siberian Federal University. Mathematics and Physics, 12:3 (2019), 310–316 | DOI | MR | Zbl
[9] M.V. Efimova, “The effect of interfacial heat transfer energy on a two-layer creeping flow in a flat channel”, Journal of physics: Conference series, 1268 (2019), 012022 | DOI
[10] V.K. Andreev, N.L. Sobachkina, “Two-layer stationary flow in a cylindrical capillary taking into account changes in the internal energy of the interface”, Journal of Siberian Federal University. Mathematics and Physics, 14:4 (2021), 507–518 | DOI | MR | Zbl
[11] S. Wiegend, “Thermal diffusion in liquid mixtures and polymer solutions”, J. Phys.: Condens. Matter., 16 (2004), 357–379 | MR
[12] K. Hiemenz, “Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten geraden Kreiszylinder”, Dinglers Politech. J., 326 (1911), 314–321
[13] V.K. Andreev, B.V. Bekezhanova, Stability of non-isothermal liquids, monograph, Siberian Federal University, Krasnoyarsk, 2010 (in Russian)
[14] K. Fletcher, Numerical methods based on the Galerkin method, Mir, M., 1988 (in Russian) | MR
[15] Yu. Luke, Special mathematical functions and their approximations, Mir, M., 1980 (in Russian) | MR
[16] G. Sege, Orthogonal polynomials, Fizmatlit, M., 1962 (in Russian)
[17] N.L. Sobachkina, Solution of initial boundary value problems on the motion of binary mixtures in cylindrical regions, Diss. cand. phys.-math. sciences, Siberian Federal University, Krasnoyarsk, 2009 (in Russian)