Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2022_15_5_a7, author = {Taghareed A. Faree and Satish K. Panchal}, title = {Existence and uniqueness of the solution to a class of fractional boundary value problems using topological methods}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {615--622}, publisher = {mathdoc}, volume = {15}, number = {5}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a7/} }
TY - JOUR AU - Taghareed A. Faree AU - Satish K. Panchal TI - Existence and uniqueness of the solution to a class of fractional boundary value problems using topological methods JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2022 SP - 615 EP - 622 VL - 15 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a7/ LA - en ID - JSFU_2022_15_5_a7 ER -
%0 Journal Article %A Taghareed A. Faree %A Satish K. Panchal %T Existence and uniqueness of the solution to a class of fractional boundary value problems using topological methods %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2022 %P 615-622 %V 15 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a7/ %G en %F JSFU_2022_15_5_a7
Taghareed A. Faree; Satish K. Panchal. Existence and uniqueness of the solution to a class of fractional boundary value problems using topological methods. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 5, pp. 615-622. http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a7/
[1] R.P. Agarwal, M. Benchohra, S. Hamani, “A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions”, Acta. Appl. Math., 109 (2010), 973–1033 | DOI | MR | Zbl
[2] R.P. Agarwal, Y. Zhou, Y. He, “Existence of fractional neutral functional differential equations”, Comput. Math. Appl., 59 (2010), 1095–1100 | DOI | MR | Zbl
[3] A.B. Malinowska, D.F.M. Torres, Introduction to the Fractional Calculus of Variations, World Scientific, 2012 | MR
[4] K. Balachandran, J.Y. Park, “Nonlocal Cauchy problem for abstract fractional semilinear evolution equations”, Nonlinear Analysis, 71 (2009), 4471–4475 | DOI | MR | Zbl
[5] M. Benchohra, A. Cabada, D. Seba, An Existence Result for Nonlinear Fractional Differential Equations on Banach Spaces, Hindawi Publishing Corporation, 2009 | MR
[6] M. Feckan, Topological Degree Approach to Bifurcation Problems, Topological Fixed Point Theory and its Applications, 5, 2008 | MR | Zbl
[7] J. Mawhin, Topological Degree Methods in Nonlinear Boundary Value Problems, CMBS Regional Conference Series in Mathematics, 40, Amer. Math. Soc., Providence, R.I., 1979 | DOI | MR | Zbl
[8] R.A. Khan, K. Shah, “Existence and uniqueness of solutions to fractional order multi-point boundary value problems”, Comun. Appl. Anal., 19 (2015), 515–526 | MR
[9] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Elsevier, Amsterdam, 2006 | MR | Zbl
[10] K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993 | MR | Zbl
[11] I. Podlubny, Fractional Differential Equation, Academic Press, San Diego, 1999 | MR
[12] Samina, K. Shah, R.A. Khan, “Existence of positive solutions to a coupled system with three point boundary conditions via degree theory”, Communications in Nonlinear Analysis, 3 (2017), 34–43
[13] T.A. Faree, S.K. Panchal, “Fractional Boundary Value Problems with Integral Boundary Conditions via Topological Degree Method”, Journal of Mathematical Research with Applications, 42:2 (2022), 145–152 | MR | Zbl
[14] T.A. Faree, S.K. Panchal, “Existence of solution for impulsive fractional differential equations via topological degree method”, J. Korean Soc. Ind. Appl. Math., 25:1 (2021), 16–25 | MR | Zbl
[15] T.A. Faree, S.K. Panchal, “Existence of solution to fractional hybrid differential equations using topological degree theory”, J. Math. Comput. Sci., 12 (2022), 170 | MR
[16] T.A. Faree, S.K. Panchal, “Approximative Analysis for Boundary Value Problems of Fractional Order via Topological Degree Method”, Annals of Pure and Applied Mathematics, 25:1 (2022), 7–15 | MR
[17] J. Wang, Y. Zhou, W. Wei, “Study in fractional differential equations by means of topological degree methods”, Numerical functional analysis and optimization, 33:2 (2012) | DOI | MR
[18] J. Wang, Y. Zhou, M. Medve, “Qualitative analysis for nonlinear fractional differential equations via topological degree method”, Topological methods in Nonlinear Analysis, 40:2 (2012), 245–271 | MR | Zbl
[19] S. Zhang, “Positive solutions for boundary-value problems of nonlinear fractional differential equations”, Electron. J. Differ. Equ., 36 (2006), 1–12 | DOI | MR
[20] S. Zhang, “The existence of a positive solution for a nonlinear fractional differential equation”, J. Math. Anal. Appl., 252 (2000), 804–812 | DOI | MR | Zbl
[21] Y. Zhou, Basic Theory Of Fractional Differential Equations, World Scientific, 2017 | MR | Zbl