Tutorial on rational rotation $C^*$-algebras
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 5, pp. 598-609.

Voir la notice de l'article provenant de la source Math-Net.Ru

The rotation algebra $\mathcal A_{\theta}$ is the universal $C^*$-algebra generated by unitary operators $U, V$ satisfying the commutation relation $UV = \omega V U$ where $\omega= e^{2\pi i \theta}.$ They are rational if $\theta = p/q$ with $1 \leqslant p \leqslant q-1,$ othewise irrational. Operators in these algebras relate to the quantum Hall effect [2,26,30], kicked quantum systems [22, 34], and the spectacular solution of the Ten Martini problem [1]. Brabanter [4] and Yin [38] classified rational rotation $C^*$-algebras up to $*$-isomorphism. Stacey [31] constructed their automorphism groups. They used methods known to experts: cocycles, crossed products, Dixmier-Douady classes, ergodic actions, $\mathrm{K}$-theory, and Morita equivalence. This expository paper defines $\mathcal A_{p/q}$ as a $C^*$-algebra generated by two operators on a Hilbert space and uses linear algebra, Fourier series and the Gelfand–Naimark–Segal construction [16] to prove its universality. It then represents it as the algebra of sections of a matrix algebra bundle over a torus to compute its isomorphism class. The remarks section relates these concepts to general operator algebra theory. We write for mathematicians who are not $C^*$-algebra experts.
Keywords: bundle topology, Gelfand–Naimark–Segal construction, irreducible representation
Mots-clés : spectral decomposition.
@article{JSFU_2022_15_5_a5,
     author = {Wayne M. Lawton},
     title = {Tutorial on rational rotation $C^*$-algebras},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {598--609},
     publisher = {mathdoc},
     volume = {15},
     number = {5},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a5/}
}
TY  - JOUR
AU  - Wayne M. Lawton
TI  - Tutorial on rational rotation $C^*$-algebras
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2022
SP  - 598
EP  - 609
VL  - 15
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a5/
LA  - en
ID  - JSFU_2022_15_5_a5
ER  - 
%0 Journal Article
%A Wayne M. Lawton
%T Tutorial on rational rotation $C^*$-algebras
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 598-609
%V 15
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a5/
%G en
%F JSFU_2022_15_5_a5
Wayne M. Lawton. Tutorial on rational rotation $C^*$-algebras. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 5, pp. 598-609. http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a5/

[1] A. Avila, S. Jitomirskaya, “Solution of the ten martini problem”, Annals of Mathematics, 170:1 (2000), 303–341 | DOI | MR

[2] F. Boca, Rotation $C^*$-algebras and Almost Mathieu Operators, The Theta Foundation, Bucharest, 2001 | MR | Zbl

[3] M. Bownik, The Kadison–Singer problem, arXiv: 1702.04578 | MR

[4] M. De Brabanter, “The structure of rational rotation $C^*$-algebras”, Arch. Math., 43 (1984), 79–83 | DOI | MR | Zbl

[5] O. Bratteli, G.A. Elliot, D.E. Evans, A. Kishimoto, “Non-commutative spheres. II: rational rotations”, J. Operator Theory, 27 (1992), 53–85 | MR | Zbl

[6] P.G. Casazza, J.C. Tremain, “The Kadison-Singer problem in mathematics and engineering”, Proc. Nat. Acad. Sci., 103:7 (2006), 2032–2039 | DOI | MR | Zbl

[7] A. Connes, “Classification of injective factors”, Annals of Mathematics, 104 (1976), 73–115 | DOI | MR | Zbl

[8] K.E. Courtney, $C^*$–algebras and their finite–dimensional representations, PhD Dissertation, Department of Mathematics, University of Virginia, 2018

[9] K.E. Courtney, Kirchberg's QWEP conjecture: between Connes' and Tsirelson's problems, UK Operator Algebra Seminar, 2020

[10] K.E. Courtney, T. Schulman, “Elements of $C^*$-algebras attaining their norm in a finite–dimensional representation”, Canadian J. Math., 71:1 (2019), arXiv: 1707.01949 | DOI | MR | Zbl

[11] K.E. Courtney, D. Sherman, “The universal $C^*$-algebra of a contraction”, J. Operator Theory, 84:1 (2020), 153–184, arXiv: 1811.04043 | DOI | MR | Zbl

[12] K.E. Courtney, “Universal $C^*$–algebras with the local lifting property”, Math. Scand., 127 (2021), 361–381, arXiv: 2002.02365 | DOI | MR | Zbl

[13] K.R. Davidson, $C^*$-Algebras by Examples, American Math. Soc., Providence, Rhode Island, 1991 | MR

[14] J. Dauns, “The primitive ideal space of a $C^*$-algebra”, Canadian J. Math., XXVI:1 (1974), 42–49 | DOI | MR | Zbl

[15] G.A. Elliot, D.E. Evans, “The structure of irrational rotation $C^*$-algebras”, Annals of Mathematics, 138:3 (1993), 477–501 | DOI | MR | Zbl

[16] I.M. Gelfand, M.A. Naimark, “On the embedding of normed rings into the ring of operators on a Hilbert space”, Mat. Sbornik, 12:2 (1943), 197–217 | MR

[17] B. Hall, Lie Groups, Lie Algebras, and Representations, An Elementary Introduction, Springer, Switzerland, 2003 | MR | Zbl

[18] A. Hatcher, Vector Bundles and K-Theory, https://openlibra.com/en/book/vector-bundles-and-k-theory

[19] A.W. Marcus, D.A. Spielman, N. Shrivastava, “Interlacing Famlies II: mixed characteristic polynomials and the Kadison–Singer problem”, Annals of Mathematics, 182:1 (2015), 327–350 | DOI | MR | Zbl

[20] Z. Ji, A. Natarajan, T. Vidick, J. Wright, H. Yuen, “MIP$^* = $ RE”, Communications of the ACM, 64:11 (2021), 131–138, arXiv: 2001.04383 | DOI

[21] R.V. Kadison, I.M. Singer, “Extensions of pure states”, American J. Math., 81:2 (1959), 383–400 | DOI | MR | Zbl

[22] W. Lawton, A. Mouritzen, J. Wang, J. Gong, “Spectral relationships between kicked Harper and on-resonance double kicked rotor operators”, J. Math. Phys., 50:3 (2009), 032103 | DOI | MR | Zbl

[23] W. Lawton, “Minimal sequences and the Kadison–Singer problem”, Bull. Malaysian Math. Science Society, 33 (2010), 169–176 | MR | Zbl

[24] V. Paulsen, “A dynamical system approach to the Kadison–Singer problem”, J. Functional Analysis, 255:1 (2008), 120–132 | DOI | MR | Zbl

[25] J. von Neumann, “Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren”, Math. Annalen, 102 (1929), 49–131 | MR | Zbl

[26] R. Rammal, J. Bellisard, “An algebraic semi-classical approach to Bloch electrons in a magnetic field”, J. Physics France, 51 (1990), 1803–1830 | DOI | MR

[27] F. Riesz, B. Sz.-Nagy, Functional Analysis, Frederick Ungar Publishing Company, New York, 1955 | MR

[28] W. Rudin, Real and Complex Analysis, McGraw–Hill, Singapore, 1987 | MR | Zbl

[29] G. Shilov, Linear Algebra, Dover, New York, 1977 | MR

[30] B. Simon, “Almost periodic Schr$\ddot o$dinger operators: a review”, Advances in Applied Math., 3 (1982), 463–490 | DOI | MR | Zbl

[31] P.J. Stacey, “The automorphism groups of rational rotation algebras”, J. Operator Theory, 39 (1998), 395–400 | MR | Zbl

[32] J. Szigeti, L. Wyk, “A constructive elementary proof of the Skolem–Noether theorem for matrix algebras”, The American Mathematical Monthly, 124:16 (2017), 966–968, arXiv: 1810.08368 | DOI | MR | Zbl

[33] B. van der Waerden, Algebra I, Springer, New York, 1991 | MR | Zbl

[34] H. Wang, D. Ho, W. Lawton, J. Wang, J. Gong, “Kicked-Harper model versus on-resonance double-kicked rotor model: From spectral difference to topological equivalence”, Physical Review E, 88 (2013), 052920, 15 pp., arXiv: 1306.6128 | DOI

[35] N. Weaver, “The Kadison–Singer problem in discrepancy theory”, Discrete Math., 278:1-3 (2004), 227–239 | DOI | MR | Zbl

[36] D. Williams, Crossed Products of $C^*$-Algebras, American Math. Society, 2007 | MR | Zbl

[37] A. Wintner, “Zur Theorie der beschränkten Bilinearformen”, Math. Zeitschr., 30 (1929), 228–289 | DOI | MR

[38] H.S. Yin, “A simple proof of the classification of rational rotation $C^*$-algebras”, Proceedings of the American Math. Society, 98:3 (1986), 469–470 | MR | Zbl