Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2022_15_5_a5, author = {Wayne M. Lawton}, title = {Tutorial on rational rotation $C^*$-algebras}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {598--609}, publisher = {mathdoc}, volume = {15}, number = {5}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a5/} }
Wayne M. Lawton. Tutorial on rational rotation $C^*$-algebras. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 5, pp. 598-609. http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a5/
[1] A. Avila, S. Jitomirskaya, “Solution of the ten martini problem”, Annals of Mathematics, 170:1 (2000), 303–341 | DOI | MR
[2] F. Boca, Rotation $C^*$-algebras and Almost Mathieu Operators, The Theta Foundation, Bucharest, 2001 | MR | Zbl
[3] M. Bownik, The Kadison–Singer problem, arXiv: 1702.04578 | MR
[4] M. De Brabanter, “The structure of rational rotation $C^*$-algebras”, Arch. Math., 43 (1984), 79–83 | DOI | MR | Zbl
[5] O. Bratteli, G.A. Elliot, D.E. Evans, A. Kishimoto, “Non-commutative spheres. II: rational rotations”, J. Operator Theory, 27 (1992), 53–85 | MR | Zbl
[6] P.G. Casazza, J.C. Tremain, “The Kadison-Singer problem in mathematics and engineering”, Proc. Nat. Acad. Sci., 103:7 (2006), 2032–2039 | DOI | MR | Zbl
[7] A. Connes, “Classification of injective factors”, Annals of Mathematics, 104 (1976), 73–115 | DOI | MR | Zbl
[8] K.E. Courtney, $C^*$–algebras and their finite–dimensional representations, PhD Dissertation, Department of Mathematics, University of Virginia, 2018
[9] K.E. Courtney, Kirchberg's QWEP conjecture: between Connes' and Tsirelson's problems, UK Operator Algebra Seminar, 2020
[10] K.E. Courtney, T. Schulman, “Elements of $C^*$-algebras attaining their norm in a finite–dimensional representation”, Canadian J. Math., 71:1 (2019), arXiv: 1707.01949 | DOI | MR | Zbl
[11] K.E. Courtney, D. Sherman, “The universal $C^*$-algebra of a contraction”, J. Operator Theory, 84:1 (2020), 153–184, arXiv: 1811.04043 | DOI | MR | Zbl
[12] K.E. Courtney, “Universal $C^*$–algebras with the local lifting property”, Math. Scand., 127 (2021), 361–381, arXiv: 2002.02365 | DOI | MR | Zbl
[13] K.R. Davidson, $C^*$-Algebras by Examples, American Math. Soc., Providence, Rhode Island, 1991 | MR
[14] J. Dauns, “The primitive ideal space of a $C^*$-algebra”, Canadian J. Math., XXVI:1 (1974), 42–49 | DOI | MR | Zbl
[15] G.A. Elliot, D.E. Evans, “The structure of irrational rotation $C^*$-algebras”, Annals of Mathematics, 138:3 (1993), 477–501 | DOI | MR | Zbl
[16] I.M. Gelfand, M.A. Naimark, “On the embedding of normed rings into the ring of operators on a Hilbert space”, Mat. Sbornik, 12:2 (1943), 197–217 | MR
[17] B. Hall, Lie Groups, Lie Algebras, and Representations, An Elementary Introduction, Springer, Switzerland, 2003 | MR | Zbl
[18] A. Hatcher, Vector Bundles and K-Theory, https://openlibra.com/en/book/vector-bundles-and-k-theory
[19] A.W. Marcus, D.A. Spielman, N. Shrivastava, “Interlacing Famlies II: mixed characteristic polynomials and the Kadison–Singer problem”, Annals of Mathematics, 182:1 (2015), 327–350 | DOI | MR | Zbl
[20] Z. Ji, A. Natarajan, T. Vidick, J. Wright, H. Yuen, “MIP$^* = $ RE”, Communications of the ACM, 64:11 (2021), 131–138, arXiv: 2001.04383 | DOI
[21] R.V. Kadison, I.M. Singer, “Extensions of pure states”, American J. Math., 81:2 (1959), 383–400 | DOI | MR | Zbl
[22] W. Lawton, A. Mouritzen, J. Wang, J. Gong, “Spectral relationships between kicked Harper and on-resonance double kicked rotor operators”, J. Math. Phys., 50:3 (2009), 032103 | DOI | MR | Zbl
[23] W. Lawton, “Minimal sequences and the Kadison–Singer problem”, Bull. Malaysian Math. Science Society, 33 (2010), 169–176 | MR | Zbl
[24] V. Paulsen, “A dynamical system approach to the Kadison–Singer problem”, J. Functional Analysis, 255:1 (2008), 120–132 | DOI | MR | Zbl
[25] J. von Neumann, “Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren”, Math. Annalen, 102 (1929), 49–131 | MR | Zbl
[26] R. Rammal, J. Bellisard, “An algebraic semi-classical approach to Bloch electrons in a magnetic field”, J. Physics France, 51 (1990), 1803–1830 | DOI | MR
[27] F. Riesz, B. Sz.-Nagy, Functional Analysis, Frederick Ungar Publishing Company, New York, 1955 | MR
[28] W. Rudin, Real and Complex Analysis, McGraw–Hill, Singapore, 1987 | MR | Zbl
[29] G. Shilov, Linear Algebra, Dover, New York, 1977 | MR
[30] B. Simon, “Almost periodic Schr$\ddot o$dinger operators: a review”, Advances in Applied Math., 3 (1982), 463–490 | DOI | MR | Zbl
[31] P.J. Stacey, “The automorphism groups of rational rotation algebras”, J. Operator Theory, 39 (1998), 395–400 | MR | Zbl
[32] J. Szigeti, L. Wyk, “A constructive elementary proof of the Skolem–Noether theorem for matrix algebras”, The American Mathematical Monthly, 124:16 (2017), 966–968, arXiv: 1810.08368 | DOI | MR | Zbl
[33] B. van der Waerden, Algebra I, Springer, New York, 1991 | MR | Zbl
[34] H. Wang, D. Ho, W. Lawton, J. Wang, J. Gong, “Kicked-Harper model versus on-resonance double-kicked rotor model: From spectral difference to topological equivalence”, Physical Review E, 88 (2013), 052920, 15 pp., arXiv: 1306.6128 | DOI
[35] N. Weaver, “The Kadison–Singer problem in discrepancy theory”, Discrete Math., 278:1-3 (2004), 227–239 | DOI | MR | Zbl
[36] D. Williams, Crossed Products of $C^*$-Algebras, American Math. Society, 2007 | MR | Zbl
[37] A. Wintner, “Zur Theorie der beschränkten Bilinearformen”, Math. Zeitschr., 30 (1929), 228–289 | DOI | MR
[38] H.S. Yin, “A simple proof of the classification of rational rotation $C^*$-algebras”, Proceedings of the American Math. Society, 98:3 (1986), 469–470 | MR | Zbl