Second Hankel determinant for bi-univalent functions associated with $q$-differential operator
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 5, pp. 663-671
Voir la notice de l'article provenant de la source Math-Net.Ru
The objective of this paper is to obtain an upper bound to the second Hankel determinant denoted by $H_{2}(2)$ for the class $S_{q}^{*}(\alpha)$ of bi-univalent functions using $q$-differential operator.
Keywords:
Hankel determinant, bi-univalent functions, $q$-differential operator, Fekete-Szegö functional.
@article{JSFU_2022_15_5_a13,
author = {Mallikarjun G. Shrigan},
title = {Second {Hankel} determinant for bi-univalent functions associated with $q$-differential operator},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {663--671},
publisher = {mathdoc},
volume = {15},
number = {5},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a13/}
}
TY - JOUR AU - Mallikarjun G. Shrigan TI - Second Hankel determinant for bi-univalent functions associated with $q$-differential operator JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2022 SP - 663 EP - 671 VL - 15 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a13/ LA - en ID - JSFU_2022_15_5_a13 ER -
%0 Journal Article %A Mallikarjun G. Shrigan %T Second Hankel determinant for bi-univalent functions associated with $q$-differential operator %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2022 %P 663-671 %V 15 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a13/ %G en %F JSFU_2022_15_5_a13
Mallikarjun G. Shrigan. Second Hankel determinant for bi-univalent functions associated with $q$-differential operator. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 5, pp. 663-671. http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a13/