Second Hankel determinant for bi-univalent functions associated with $q$-differential operator
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 5, pp. 663-671.

Voir la notice de l'article provenant de la source Math-Net.Ru

The objective of this paper is to obtain an upper bound to the second Hankel determinant denoted by $H_{2}(2)$ for the class $S_{q}^{*}(\alpha)$ of bi-univalent functions using $q$-differential operator.
Keywords: Hankel determinant, bi-univalent functions, $q$-differential operator, Fekete-Szegö functional.
@article{JSFU_2022_15_5_a13,
     author = {Mallikarjun G. Shrigan},
     title = {Second {Hankel} determinant for bi-univalent functions associated with $q$-differential operator},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {663--671},
     publisher = {mathdoc},
     volume = {15},
     number = {5},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a13/}
}
TY  - JOUR
AU  - Mallikarjun G. Shrigan
TI  - Second Hankel determinant for bi-univalent functions associated with $q$-differential operator
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2022
SP  - 663
EP  - 671
VL  - 15
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a13/
LA  - en
ID  - JSFU_2022_15_5_a13
ER  - 
%0 Journal Article
%A Mallikarjun G. Shrigan
%T Second Hankel determinant for bi-univalent functions associated with $q$-differential operator
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 663-671
%V 15
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a13/
%G en
%F JSFU_2022_15_5_a13
Mallikarjun G. Shrigan. Second Hankel determinant for bi-univalent functions associated with $q$-differential operator. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 5, pp. 663-671. http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a13/

[1] Ş. Altinkaya, S. Yalçin, “Second Hankel determinant coefficients for some subclasses of bi-univalent functions”, TWMS. J. Pure Appl. Math., 7 (2016), 98–104 | MR

[2] D.A. Brannan, T.S. Taha, “On some classes of bi-univalent functions”, Mathematical Analysis and its Applications (Kuwait, Februay 18–21, 1985), KFAS Proceedings Series, 3, eds. S. M. Mazhar, A. Hamoui, N. S. Faour, Pergamon Press, Elsevier science Limited, Oxford, 1988, 53–60 | MR

[3] D.G. Cantor, “Power series with integral coefficients”, Bull. Amer. Math. Soc., 69 (1963), 362–366 | DOI | MR | Zbl

[4] P. Dienes, The Taylor series: an introduction to the theory of functions of a complex variables, Dover, New York, 1957 | MR

[5] P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer-Verlag, New York–Berlin–Heidelberg–Tokyo, 1983 | MR | Zbl

[6] U. Grenander, G. Szegö, Toeplitz forms and their applications, Calfornia Monographs in Mathematical Science University, Calfornia Press, Berkeley, 1958 | MR | Zbl

[7] M.E.H. Ismail, E. Merkes, D. Styer, “A generalization of starlike functions”, Comp. Var. The. Appl., 14 (1990), 77–84 | MR | Zbl

[8] F.H. Jakson, “On q-definite integrals”, Quart. J. Pure Appl. Math., 41 (1910), 193–203

[9] A. Janteng, S.A. Halim, M. Darus, “Hankel determinant for starlike and convex function”, Int. J. Math. Anal., 1:13 (2007), 619–625 | MR | Zbl

[10] S. Kanas, A. Wiśniowska, “Conic domains and starlike functions”, Rev. Roumanie Math. Pures Appl., 45:4 (2000), 647–657 | MR | Zbl

[11] F.R. Keogh, E.P. Merkes, “A Coefficient inequality for certain classes of analytic functions”, Int. J. Math. Anal. (Ruse), 1:13 (2007), 619–625 | MR

[12] M. Lewin, “On a coefficient problem for bi-univalent function”, Proc. Amer. Math. Soc., 18 (1967), 63–68 | DOI | MR | Zbl

[13] K. Lee, V. Ravichandran, S. Suramaniam, “Bounds for the second Hankel determinant of certain univalent functions”, J. Inequal. Appl., 281 (2013), 1–17 | MR | Zbl

[14] N. Magesh, V.K. Balaji, J. Yamini, “Certain subclasses of bistarlike and biconvex functions based on quasi-subordination”, Abst. Appl. Anal., 2016, 3102960 | DOI | MR | Zbl

[15] C. Pommerenke, “On the Coefficients and Hankel determinant on univalent functions”, J. London Math. Soc., 41 (1966), 111–122 | DOI | MR | Zbl

[16] C. Pommerenke, Univalent Function, Vandenhoeck and Ruprecht, Göttingen, 1975 | MR

[17] S.D. Purohit, R.K. Raina, “Certain subclasses of analytic functions associated with fractional $q$-calculus operators”, Math. Scand., 109:1 (2011), 55–70 | DOI | MR | Zbl

[18] V. Radhika, S. Sivasubramanian, G. Murugusundaramoorthy, J.M. Jahangiri, “Toeplitz matrices whose elements are the coefficients of functions with bounded boundary rotation”, J. Complex Anal., 2016 (2016), 4960704 | DOI | MR | Zbl

[19] T. Rosy, S.S. Verma, G. Murugussundaramoorthy, “Fekete-Szegö functional problem for concave functions associated with Fox-Wright's generalized hyergeometric functions”, Ser. Math. Inform., 30:4 (2015), 465–477 | MR | Zbl

[20] M.G. Shrigan, P.N. Kamble, “Fekete-Szegö problem for certain Class of Bi-stralike Functions involving $q$-differential operator”, J. Combin. Math. Combin. Comput., 112 (2020), 65–73 | MR

[21] H.M. Srivastava, A.K. Mishra, P. Gochhayat, “Certain subclass of analytic and bi-univalent functions”, Appl. Math. Lett., 23 (2010), 1188–1192 | DOI | MR | Zbl

[22] H.M. Srivastava, Ş. Altinkaya, S. Yalçin, “Hankel determinant for a subclass of bi-univalent functions defined by using a symmetric $q$-derivative operator”, Filomat, 32 (2018), 503–516 | DOI | MR | Zbl

[23] H.M. Srivastava, S. Gaboury, F. Ghanim, “Coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions”, Acta Univ. Apulensis Math. Inform., 41 (2015), 153–164 | MR | Zbl

[24] H.M. Srivastava, S. Gaboury, F. Ghanim, “Coefficient estimates for some general subclasses of analytic and bi-univalent functions”, Afrika Mat., 28 (2017), 693–706 | DOI | MR | Zbl

[25] H.M. Srivastava, S. Sümer, S.G. Hamadi, J.M. Jahangiri, “Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator”, Bull. Iranian Math. Soc., 44:1 (2018), 149–157 | DOI | MR | Zbl

[26] H. Tang, H.M. Srivastava, S. Sivasubramanian, P. Gurusamy, “The Fekete-Szegö functional problems for some classes of m-fold symmetric bi-univalent functions”, J. Math. Inequal., 10 (2016), 106–1092 | MR

[27] Q.-H. Xu, Y.-C. Gui, H.M. Srivastava, “Coefficient estimates for a certain subclass of analytic and bi-univalent functions”, Appl. Math. Lett., 25 (2012), 990–994 | DOI | MR | Zbl