Second Hankel determinant for bi-univalent functions associated with $q$-differential operator
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 5, pp. 663-671

Voir la notice de l'article provenant de la source Math-Net.Ru

The objective of this paper is to obtain an upper bound to the second Hankel determinant denoted by $H_{2}(2)$ for the class $S_{q}^{*}(\alpha)$ of bi-univalent functions using $q$-differential operator.
Keywords: Hankel determinant, bi-univalent functions, $q$-differential operator, Fekete-Szegö functional.
@article{JSFU_2022_15_5_a13,
     author = {Mallikarjun G. Shrigan},
     title = {Second {Hankel} determinant for bi-univalent functions associated with $q$-differential operator},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {663--671},
     publisher = {mathdoc},
     volume = {15},
     number = {5},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a13/}
}
TY  - JOUR
AU  - Mallikarjun G. Shrigan
TI  - Second Hankel determinant for bi-univalent functions associated with $q$-differential operator
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2022
SP  - 663
EP  - 671
VL  - 15
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a13/
LA  - en
ID  - JSFU_2022_15_5_a13
ER  - 
%0 Journal Article
%A Mallikarjun G. Shrigan
%T Second Hankel determinant for bi-univalent functions associated with $q$-differential operator
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 663-671
%V 15
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a13/
%G en
%F JSFU_2022_15_5_a13
Mallikarjun G. Shrigan. Second Hankel determinant for bi-univalent functions associated with $q$-differential operator. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 5, pp. 663-671. http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a13/