Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2022_15_4_a9, author = {Nassima Almi and Abdallah Sayah}, title = {Estimating the inverse distribution function at the boundary}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {510--522}, publisher = {mathdoc}, volume = {15}, number = {4}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a9/} }
TY - JOUR AU - Nassima Almi AU - Abdallah Sayah TI - Estimating the inverse distribution function at the boundary JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2022 SP - 510 EP - 522 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a9/ LA - en ID - JSFU_2022_15_4_a9 ER -
%0 Journal Article %A Nassima Almi %A Abdallah Sayah %T Estimating the inverse distribution function at the boundary %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2022 %P 510-522 %V 15 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a9/ %G en %F JSFU_2022_15_4_a9
Nassima Almi; Abdallah Sayah. Estimating the inverse distribution function at the boundary. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 4, pp. 510-522. http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a9/
[1] M.Denuit, J. Dhaene, Actuarial Theory for Dependent Risk: Measures, Orders and Models, Wiley, New York, 2005
[2] H.Yamato, “Uniform convergence of an estimator of a distribution function”, Bull.Math.Statist., 15 (1973), 69–78
[3] R.D.Reiss, “Nonparametric estimation of smooth distribution functions”, Scand. J.Statist., 8 (1981), 116–119
[4] M.Falk, “Relative efficiency and deficiency of kernel type estimators of smooth distribution functions”, Statist. Neerlandica, 37 (1983), 73–83
[5] M.Rosenblatt, “Remarks on Some Nonparametric Estimates of a Density Function”, The Annals of Mathematical Statistics, 27 (1956), 832–837
[6] E.Parzen, “Nonparametric Statistical Data Modelling”, Journal of the American Statistical Association, 74 (1979), 105–131
[7] E.A.Nadaraya, “Some new estimates for distribution function”, Theory of Probab., 9 (1964), 497–500
[8] N.Almi, A.Sayah, “nonparametric kernel distribution function estimation near endpoints”, Advances in Mathematics: Scientific Journal, 10 (2021), 3679–3697 | DOI
[9] M.Tour, A.Sayah, Y.Djebrane, “A Modified Champernowne Transformation to Improve Boundary Effect in Kernel Distribution Estimation”, Afrika Statistika, 12 (2017), 1219–1233 | DOI
[10] C.Tenreiro, “Boundary Kernels for Distribution Function Estimation”, REVSTAT Statistical Journal, 11 (2013), 169–190
[11] C.Tenreiro, A note on boundary kernels for distribution function estimation, 2015, arXiv: 1501.04206
[12] J.Kolácek, R.J.Karunamuni, “On boundary correction in kernel estimation of ROC curves”, Austrian Journal of Statistics, 38 (2009), 17–32 | DOI
[13] S.Zhang, L.Zhong, Z.Zhang, “Estimating a Distribution Function at the Boundary”, Austrian Journal of Statistics, 49 (2020), 1–23 | DOI
[14] J.Galambos, The asymptotic theory of extreme order statistics, Krieger, Malabar, Florida, 1978
[15] H.A.David, Order Statistics, 2nd Edition, John Wiley, New York, 1981
[16] S.S.Ralescu, S.Sun, “Necessary and sufficient conditions for the asymptotic normality of perturbed sample quantiles”, J. Statist. Plann. Inference, 35 (1993), 55–64
[17] A.Azzalini, “A note on the estimation of a distribution function and quantiles by a kernel method”, Biometrika, 68 (1981), 326–328
[18] S.S.Yang, “A Smooth Nonparametric Estimator of a Quantile Function”, Journal of the American Statistical Association, 80 (1985), 1004–1011
[19] S.J.Sheater, J.S.Marron, “Kernel quatile estimtors”, Journal of the American Statistical Associatio, 85 (1990), 410–416
[20] F.E.Harrell, C.E.Davis, “A New Distribution-Free Quantile Estimator”, Biometrika, 69 (1982), 635–640
[21] C.Park, Smooth nonparametric estimation of a quantile function under right censoring using beta kernels, Technical Report (TR 2006-01-CP), Department of Mathematical Sciences, Clemson University, 2006
[22] A.Charpentier, A.Oulidi, “Beta kernel quantile estimators of heavy-tailed loss distributions”, Stat. Comput., 20 (2010), 35–55 | DOI
[23] A.Sayah, Y.Djebrane, A Necir, “Champernowne transformation in kernel quantile estimation for heavy-tailed distributions”, Afrika Statistika, 5 (2010), 288–296
[24] M.D.Nichols, W.J.Padgett, “A bootstrap control chart for Weibull percentiles”, Qual Reliab Eng Int., 22 (2006), 141–151 | DOI
[25] Q.Bi, W.Gui, “Bayesian and classical estimation of stress-strength reliability for inverse Weibull lifetime models”, Algorithms, 10 (2017), 71 | DOI