Modeling of a differential laser sensing system for detecting low concentrations of methane in the surface layer
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 4, pp. 482-492.

Voir la notice de l'article provenant de la source Math-Net.Ru

The relevance of research is due to the need for remote monitoring of the atmosphere for the presence of suspended matter. The application of this method for exploration in geo-prospecting will make it possible to identify areas with an increased content of suspended solids in the atmosphere, which will make it possible to record local outputs of natural gas, as well as observe the spatial dynamics of surface leaks in real time, carry out topographic referencing of prospective fields, etc. In addition, detection leaks and increased concentration of methane will allow early implementation of a set of measures aimed at preventing environmental disasters.
Keywords: remote sensing of the earth, localization of oil and gas fields, interference compensation, mathematical model.
Mots-clés : lidar, route
@article{JSFU_2022_15_4_a6,
     author = {Svetlana L. Verkhoshentseva and Aleksey S. Tsipotan and Oleg V. Nepomnuashy and Vitaly V. Slabko},
     title = {Modeling of a differential laser sensing system for detecting low concentrations of methane in the surface layer},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {482--492},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a6/}
}
TY  - JOUR
AU  - Svetlana L. Verkhoshentseva
AU  - Aleksey S. Tsipotan
AU  - Oleg V. Nepomnuashy
AU  - Vitaly V. Slabko
TI  - Modeling of a differential laser sensing system for detecting low concentrations of methane in the surface layer
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2022
SP  - 482
EP  - 492
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a6/
LA  - en
ID  - JSFU_2022_15_4_a6
ER  - 
%0 Journal Article
%A Svetlana L. Verkhoshentseva
%A Aleksey S. Tsipotan
%A Oleg V. Nepomnuashy
%A Vitaly V. Slabko
%T Modeling of a differential laser sensing system for detecting low concentrations of methane in the surface layer
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 482-492
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a6/
%G en
%F JSFU_2022_15_4_a6
Svetlana L. Verkhoshentseva; Aleksey S. Tsipotan; Oleg V. Nepomnuashy; Vitaly V. Slabko. Modeling of a differential laser sensing system for detecting low concentrations of methane in the surface layer. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 4, pp. 482-492. http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a6/

[1] Intergovernmental Panel on Climate Change, IPCC Fifth Assessment Report, Cambridge University Press, New York, 2013

[2] A.M. Fiore et al., “Linking ozone pollution and climate change: the case for controlling methane”, Geophys. Res. Lett., 29:19 (2002), 1–4 | DOI

[3] E. Sundqvista, A. Perssona, N. Kljunb, P. Vestina, L. Chasmerd, C. Hopkinsond, A. Lindroth, “Upscaling of methane exchange in a boreal forest using soil chambermeasurements and high-resolution LiDAR elevation data”, Agricultural and Forest Meteorology, 214–215 (2015), 393–401

[4] J. Chou, Hazardous gas monitors, McGraw-Hill Book Company, New York, 2000

[5] M. Kopica, J.W. Choi, “Simple laser system for methane detection”, Sensors, Systems, and Next-Generation Satellites VII (2 February 2004), Proc. SPIE, 5234 | DOI

[6] M. Dawsey, K. Numata, S. Wu, H. Riris, “Optical parametric technology for methane measurements”, Lidar Remote Sensing for Environmental Monitoring XV, Proc. SPIE, 9612, 2015 | DOI

[7] V. Pencheva, S. Penchev, “Application of paired powerful laser diodes for detection and reconnaissance of atmospheric methane”, 20th International Conference and School on Quantum Electronics: Laser Physics and Applications (29 January 2019), Proc. SPIE, 11047 | DOI

[8] A. Yerasi, W.D. Tandy, Jr. W.J. Emery, R.A. Barton-Grimley, “Comparing the theoretical performances of 1.65- and 3.3-$\mu m$ differential absorption lidar systems used for airborne remote sensing of natural gas leaks”, J. Appl. Remote Sens., 12:2 (2018) | DOI

[9] H. Riris, K. Numata, S. Wu, B. Gonzalez, M. Rodriguez, S. Scott, S. Kawa, J. Mao, “Methane optical density measurements with an integrated path differential absorption lidar from an airborne platform”, J. Appl. Remote Sens., 11:3 (2017) | DOI

[10] E.K. Ablyazov, Laser system for remote sensing of hydrocarbon molecules in the atmosphere, author. dis. for a job. learned. step. Cand. those. Sciences (05.11.13), KubSTU, Krasnodar, 2011

[11] L.A. Skvortsov, Laser methods for remote detection of chemical compounds on the surface of bodies, TECHNOSPHERE, M., 2014 (in Russian)

[12] V.E. Zuev, G.M. Krekov, Optical models of the atmosphere, Gidrometeoizdat, L., 1986 (in Russian)

[13] V.A. Kovalev, W.E. Eichinger, Elastic Lidar: Theory, Practice and Analysis Methods, JWS Inc., New York, 2004

[14] H.C. van de Hulst, Light Scattering by Small Particles, JWS Inc., New York, 1981

[15] R. Nebuloni, “Empirical relationships between extinction coefficient and visibility in fog”, Appl. Opt., 44:18 (2005), 3795–3804 | DOI

[16] A.V. Yakimov, Physics of noise and fluctuations of parameters: a tutorial, Nizhny Novgorod State University, Nizhny Novgorod, 2013

[17] S.F. Ten, O.V Nepomnyashchy, V.A. Khabarov, “Mathematical and hardware support of a complex of geophysical research for remote, airborne sounding of the earth's surface”, Aerospace Instrumentation, 10, Nauch. Tekh. Lit. Izdat., M., 2011, 38–43 (in Russian)

[18] O.V. Nepomnyashchy, A.I. Postnikov, D.V. Popov, “Mathematical modeling of the laser-location method for determining the extremely low concentrations of hydrocarbons in the surface layer”, Nauchnoe Priborostroenie, St. Petersburg, 28:1 (2018), 11–17 (in Russian)

[19] O. Nepomnyashchy, E. Veisov, V. Kopilov, V. Khabarov, D. Popov, “The LIDAR technology and earth remote sensing for small space vehicles”, International Siberian Conference on Control and Communications 2015 (SIBCON), 2015, 306–311