Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2022_15_4_a6, author = {Svetlana L. Verkhoshentseva and Aleksey S. Tsipotan and Oleg V. Nepomnuashy and Vitaly V. Slabko}, title = {Modeling of a differential laser sensing system for detecting low concentrations of methane in the surface layer}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {482--492}, publisher = {mathdoc}, volume = {15}, number = {4}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a6/} }
TY - JOUR AU - Svetlana L. Verkhoshentseva AU - Aleksey S. Tsipotan AU - Oleg V. Nepomnuashy AU - Vitaly V. Slabko TI - Modeling of a differential laser sensing system for detecting low concentrations of methane in the surface layer JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2022 SP - 482 EP - 492 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a6/ LA - en ID - JSFU_2022_15_4_a6 ER -
%0 Journal Article %A Svetlana L. Verkhoshentseva %A Aleksey S. Tsipotan %A Oleg V. Nepomnuashy %A Vitaly V. Slabko %T Modeling of a differential laser sensing system for detecting low concentrations of methane in the surface layer %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2022 %P 482-492 %V 15 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a6/ %G en %F JSFU_2022_15_4_a6
Svetlana L. Verkhoshentseva; Aleksey S. Tsipotan; Oleg V. Nepomnuashy; Vitaly V. Slabko. Modeling of a differential laser sensing system for detecting low concentrations of methane in the surface layer. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 4, pp. 482-492. http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a6/
[1] Intergovernmental Panel on Climate Change, IPCC Fifth Assessment Report, Cambridge University Press, New York, 2013
[2] A.M. Fiore et al., “Linking ozone pollution and climate change: the case for controlling methane”, Geophys. Res. Lett., 29:19 (2002), 1–4 | DOI
[3] E. Sundqvista, A. Perssona, N. Kljunb, P. Vestina, L. Chasmerd, C. Hopkinsond, A. Lindroth, “Upscaling of methane exchange in a boreal forest using soil chambermeasurements and high-resolution LiDAR elevation data”, Agricultural and Forest Meteorology, 214–215 (2015), 393–401
[4] J. Chou, Hazardous gas monitors, McGraw-Hill Book Company, New York, 2000
[5] M. Kopica, J.W. Choi, “Simple laser system for methane detection”, Sensors, Systems, and Next-Generation Satellites VII (2 February 2004), Proc. SPIE, 5234 | DOI
[6] M. Dawsey, K. Numata, S. Wu, H. Riris, “Optical parametric technology for methane measurements”, Lidar Remote Sensing for Environmental Monitoring XV, Proc. SPIE, 9612, 2015 | DOI
[7] V. Pencheva, S. Penchev, “Application of paired powerful laser diodes for detection and reconnaissance of atmospheric methane”, 20th International Conference and School on Quantum Electronics: Laser Physics and Applications (29 January 2019), Proc. SPIE, 11047 | DOI
[8] A. Yerasi, W.D. Tandy, Jr. W.J. Emery, R.A. Barton-Grimley, “Comparing the theoretical performances of 1.65- and 3.3-$\mu m$ differential absorption lidar systems used for airborne remote sensing of natural gas leaks”, J. Appl. Remote Sens., 12:2 (2018) | DOI
[9] H. Riris, K. Numata, S. Wu, B. Gonzalez, M. Rodriguez, S. Scott, S. Kawa, J. Mao, “Methane optical density measurements with an integrated path differential absorption lidar from an airborne platform”, J. Appl. Remote Sens., 11:3 (2017) | DOI
[10] E.K. Ablyazov, Laser system for remote sensing of hydrocarbon molecules in the atmosphere, author. dis. for a job. learned. step. Cand. those. Sciences (05.11.13), KubSTU, Krasnodar, 2011
[11] L.A. Skvortsov, Laser methods for remote detection of chemical compounds on the surface of bodies, TECHNOSPHERE, M., 2014 (in Russian)
[12] V.E. Zuev, G.M. Krekov, Optical models of the atmosphere, Gidrometeoizdat, L., 1986 (in Russian)
[13] V.A. Kovalev, W.E. Eichinger, Elastic Lidar: Theory, Practice and Analysis Methods, JWS Inc., New York, 2004
[14] H.C. van de Hulst, Light Scattering by Small Particles, JWS Inc., New York, 1981
[15] R. Nebuloni, “Empirical relationships between extinction coefficient and visibility in fog”, Appl. Opt., 44:18 (2005), 3795–3804 | DOI
[16] A.V. Yakimov, Physics of noise and fluctuations of parameters: a tutorial, Nizhny Novgorod State University, Nizhny Novgorod, 2013
[17] S.F. Ten, O.V Nepomnyashchy, V.A. Khabarov, “Mathematical and hardware support of a complex of geophysical research for remote, airborne sounding of the earth's surface”, Aerospace Instrumentation, 10, Nauch. Tekh. Lit. Izdat., M., 2011, 38–43 (in Russian)
[18] O.V. Nepomnyashchy, A.I. Postnikov, D.V. Popov, “Mathematical modeling of the laser-location method for determining the extremely low concentrations of hydrocarbons in the surface layer”, Nauchnoe Priborostroenie, St. Petersburg, 28:1 (2018), 11–17 (in Russian)
[19] O. Nepomnyashchy, E. Veisov, V. Kopilov, V. Khabarov, D. Popov, “The LIDAR technology and earth remote sensing for small space vehicles”, International Siberian Conference on Control and Communications 2015 (SIBCON), 2015, 306–311