ESR and $^{57}$Fe M\"ossbauer spectroscopy study of Fe-doped SrBi$_2$Nb$_2$O$_9$
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 4, pp. 450-458.

Voir la notice de l'article provenant de la source Math-Net.Ru

Solid solutions of Bi$_2$SrNb$_{2-2x}$Fe$_{2x}$O$_{9-\delta}$ have been obtained by solid-phase synthesis. The electronic state and nature of the local environment of iron atoms in the SrBi$_2$Nb$_2$O$_9$ matrix with a layered perovskite-like structure were studied by ESR and Mössbauer spectroscopy. In the ESR spectra of samples of Bi$_2$SrNb$_{2-2x}$Fe$_{2x}$O$_{9-\delta}$ ($x\leqslant 0.04$) solid solutions an intensive asymmetric line in the low-field region with the main feature at $g = 4.27$, weakly pronounced peak $g = 6.15$ and shoulder $g\sim 9$, and also an intensive broad ($\Delta$B$_{pp} \sim 50$$150$ мТ) band centered around $g\sim 2.0$ is present. The Mössbauer spectrum of the compound Bi$_2$SrNb$_{2-2x}$Fe$_{2x}$O$_{9-\delta}$ is represented by an asymmetric doublet with isomer shift (IS) $\sim 0.3$, and quadrupole splitting (QS) $\sim 0.5$ mm/s. The shape of the doublet is reproduced by the superposition of two doublets with small and high IS and QS values. About $85\%$ of the spectral area of the paramagnetic part of the spectrum is represented by the doublet Fe$^{3+}$(1) with IS $= 0.31 \pm 0.04$, QS $= 0.45 \pm 0.04$ mm/s correlated with Fe$^{3+}$ ions in regular axial positions. The remaining part is represented by the doublet Fe$^{3+}$(2) with IS $= 0.5 \pm 0.1$, QS$= 0.7 \pm 0.2$ mm/s from the Fe$^{3+}$ ions in defect environment.
Keywords: Mössbauer spectroscopy.
Mots-clés : Aurivillius phases, iron, ESR
@article{JSFU_2022_15_4_a3,
     author = {Vladimir P. Lyutoev and Andrey Yu. Lysiuk and Larisa O. Karlova and Dmitriy S. Beznosikov and Nadezhda A. Zhuk},
     title = {ESR and $^{57}${Fe} {M\"ossbauer} spectroscopy study of {Fe-doped} {SrBi}$_2${Nb}$_2${O}$_9$},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {450--458},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a3/}
}
TY  - JOUR
AU  - Vladimir P. Lyutoev
AU  - Andrey Yu. Lysiuk
AU  - Larisa O. Karlova
AU  - Dmitriy S. Beznosikov
AU  - Nadezhda A. Zhuk
TI  - ESR and $^{57}$Fe M\"ossbauer spectroscopy study of Fe-doped SrBi$_2$Nb$_2$O$_9$
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2022
SP  - 450
EP  - 458
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a3/
LA  - en
ID  - JSFU_2022_15_4_a3
ER  - 
%0 Journal Article
%A Vladimir P. Lyutoev
%A Andrey Yu. Lysiuk
%A Larisa O. Karlova
%A Dmitriy S. Beznosikov
%A Nadezhda A. Zhuk
%T ESR and $^{57}$Fe M\"ossbauer spectroscopy study of Fe-doped SrBi$_2$Nb$_2$O$_9$
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 450-458
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a3/
%G en
%F JSFU_2022_15_4_a3
Vladimir P. Lyutoev; Andrey Yu. Lysiuk; Larisa O. Karlova; Dmitriy S. Beznosikov; Nadezhda A. Zhuk. ESR and $^{57}$Fe M\"ossbauer spectroscopy study of Fe-doped SrBi$_2$Nb$_2$O$_9$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 4, pp. 450-458. http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a3/

[1] G.A. Smolensky, Physics of ferroelectric phenomena, Nauka, L., 1985 (in Russian)

[2] G.A. Geguzina, A.T. Shuvaev, E.T. Shuvaeva, V.G. Vlasenko, “Synthesis and structure of new phases of the A$_{m-1}$Bi$_2$B$_m$O$_{3m+3}$ ($m = 2$) type”, Cristallograph. Rep., 50 (2005), 59–64

[3] V.A. Isupov, “Crystal chemical aspects of the bismuth-containing layered compounds of the A$_{m-1}$Bi$_2$B$_m$O$_{3m+3}$ type”, Ferroelectrics, 189 (1996), 211–227

[4] L. Goux, J.G. Lisoni et al., “Composition control and ferroelectric properties of sidewalls in integrated threedimensional SrBi$_2$Ta$_2$O$_9$-based ferroelectric capacitors”, J. Appl. Phys., 98 (2005), 054507

[5] H. Yan, H. Zhang, R. Ubic, M.J. Reece, J. Liu, Z. Shen, Z. Zhang, “A lead-free high-curie-point ferroelectric ceramic, CaBi$_2$Nb$_2$O$_9$”, Adv. Mater., 17 (2005), 1261–1265

[6] R. Macquart, B.J. Kennedy, T. Kamiyama, F. Izumi, “Structural phase transitions in the ferroelectric oxides Ba$_{1-x}$Pb$_x$Bi$_2$Nb$_2$O$_9$ ($x = 0.375,0.625$)”, J. Phys.-Condes. Matter., 16 (2004), 5443–5452

[7] V.V. Kharton, E.N. Naumovich, A.A. Yaremchenko, F.M.B. Marques, “Research on the electrochemistry of oxygen ion conductors in the former Soviet Union”, J. Sol. St. Electrochem., 5 (2001), 160–187

[8] K.R. Kendall, C. Navas, J.K. Thomas, H.-C. Loye, “Recent developments in perovskite-based oxide ion conductors”, Sol. St. Ion., 82 (1995), 215–223

[9] K.R. Kendall, S. Navas, J.K. Thomas, H.-C. Loye, “Recent developments in oxide ion conductors: Aurivillius phases”, Chem. Mater., 8 (1996), 642–649

[10] B.J. Kennedy, Q. Zhou, Ismunandar, Y. Kubota, K. Kato, “Cation disorder and phase transitions in the four-layer ferroelectric Aurivillius phases ABi$_4$Ti$_4$O$_{15}$ (A = Ca, Sr, Ba, Pb)”, J. Sol. St. Chem., 181 (2008), 1377–1386

[11] R. Macquart, B.J. Kennedy, Y. Shimakawa, “Cation disorder in the ferroelectric oxides ABi$_2$Ta$_2$O$_9$, A = Ca, Sr, Ba”, J. Sol. St. Chem., 160 (2001), 174–177

[12] C.H. Hervoches, P. Lightfoot, “Cation disorder in three-layer Aurivillius phases: structural studies of Bi$_{2-x}$Sr$_{2+x}$Ti$_{1-x}$Nb$_{2+x}$O$_{12}$ ($00.8$) and Bi$_{4-x}$La$_x$Ti$_3$O$_{12}$ ($x = $1 and 2)”, J. Sol. St. Chem., 153 (2000), 66–73

[13] Ismunandar, B.A. Hunter, B.J. Kennedy, “Cation disorder in the ferroelectric Aurivillius phase PbBi$_2$Nb$_2$O$_9$: an anamolous dispersion X-ray diffraction study”, Sol. St. Ion., 112 (1998), 281–289

[14] I.J. Kennedy, B.J. Kennedy, Gunawan, Marsongkohadi, “Structure of ABi$_2$Nb$_2$O$_9$ (A = Sr, Ba): refinement of powder neutron diffraction data”, J. Sol. St. Chem., 126 (1996), 135–141

[15] B. Wachsmuth, E. Zschech et al., “Structure model of Aurivillius compounds. An EXAFS study”, Phys. Stat. Sol. (a), 135 (1993), 59–71

[16] T.-C. Chen, C.-L. Thio, S.B. Desu, “Impedance spectroscopy of SrBi$_2$Ta$_2$O$_9$ and SrBi$_2$Nb$_2$O$_9$ ceramics correlation with fatigue behavior”, J. Mater. Res., 12 (1997), 2628–2637

[17] Y. Shi, Y. Pu, Q. Zhang, J. Li, L. Guo, “Dielectric and multiferroic properties of two-layered SrBi$_2$Nb$_{2-x}$Fe$_x$O$_9$ Aurivillius compounds”, Ceram. Int., 44 (2018), S61–S64 | DOI

[18] N.A. Zhuk, N.V. Chezhina, V.A. Belyy, B.A. Makeev, M.V. Yermolina, A.S. Miroshnichenko, “Magnetic susceptibility of solid solutions Bi$_2$SrNb$_{2--2x}$Fe$_{2x}$O$_{9-\delta}$”, J. Magn. Magn. Mater., 451 (2018), 96–101 | DOI

[19] N.A. Zhuk, N.V. Chezhina et al., “Influence of barium and strontium atoms on magnetic properties of iron-containing solid solutions Bi$_2$MNb$_2$O$_9$ (M – Ba, Sr)”, J. Magn. Magn. Mater., 469 (2019), 574–579 | DOI

[20] N.A. Zhuk, N.V. Chezhina, V.A. Belyy, B.A. Makeev, L.V. Rychkova, “Magnetic behavior of Bi$_5$Nb$_{3--3x}$Fe$_{3x}$O$_{15-\delta}$ solid solutions”, Letters on Materials, 7 (2017), 402–406 | DOI

[21] N.V. Chezhina, D.A. Korolevet al., “Structure, magnetic, and electrical properties of bismuth niobates doped with d-elements: XIV. Magnetic behavior of Bi$_2$BaNb$_{2--2x}$Fe$_{2x}$O$_{9-\delta}$ solid solutions”, Russ. J. General Chem., 87 (2017), 168–174 | DOI

[22] N.V. Chezhina, D.A. Korolevet al., “Structure, magnetic, and electrical properties of bismuth niobates doped with d-elements: XV. Exchange interactions and state of iron atoms in the Bi$_5$Nb$_{3--3x}$Fe$_{3x}$O$_{15-\delta}$ solid solutions”, Russ. J. General Chem., 87 (2017), 373–380 | DOI

[23] N.A. Zhuk, V.P. Lutoev, B.A. Makeev, N.V. Chezhina, V.A. Belyy, S.V. Nekipelov, “ESR, NEXAFs study and magnetic properties of Fe-doped ferroelectric ceramics”, Rev. Adv.Mater. Sci., 57 (2018), 35–41 | DOI

[24] L.G. Akselrud, Yu.N. Grin, P.Yu. Zavalii, V.K. Pecharski, V.S. Fundamentski, “CSD, an universal program package for single crystal and/or powder structure data treatment”, Twelfth European Crystallogr. Meeting, Collected Abstracts (Moscow, 1989)

[25] D.Y. Suarez, “Relation between tolerance factor and Tcin Aurivillius compounds”, J. Mater. Res., 16 (2001), 3139–3149

[26] C.M. Wang, “Electromechanical properties of A-site (LiCe)-modified sodium bismuth titanate (Na$_{0.5}$Bi$_{4.5}$Ti$_4$O$_{15}$) piezoelectric ceramics at elevated temperature”, J. Appl. Phy., 105 (2009), 463–467

[27] R.D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides”, Acta Crystallogr., A32 (1976), 751–767

[28] R.E. Vandenberghe, E. De Grave, “Application of Mössbauer Spectroscopy in Earth Sciences”, Mössbauer Spectroscopy, Tutorial Book, 2013, 91–185

[29] N.A. Lomanova, S.G. Semenov, V.V. Panchuk, V.V. Gusarov, “Structural changes in the homologous series of the Aurivillius phases Bi$_{n+1}$Fe$_{n-3}$Ti$_3$O$_{3n+3}$”, J. Alloys Comp., 528 (2012), 103–108

[30] C.K. Matsuda, R. Barco, P. Sharma, V. Biondo, A. Paesano, J.B.M. da Cunha, B. Hallouche, “Iron-containing pyrochlores: structural and magnetic characterization”, Hyperfine Interaction., 175 (2007), 55–61

[31] G. Filoti, M. Rosenberg, V. Kuncser, B. Seling, T. Fries, A. Spies, S. KemmlerSack, “Magnetic properties and cation distribution in iron containing pyrochlores”, J. Alloys Comp., 268 (1998), 16–21

[32] N.A. Zhuk, V.P. Lutoev et al., “ESR and NEXAFS spectroscopy of BiNb$_{1-x}$Fe$_x$O$_{4-\delta}$ ceramics”, Physica B: Condensed Matter., 552 (2018), 142–146 | DOI

[33] N.A. Zhuk, M.V. Yermolina, V.P. Lutoev, B.A. Makeev, E.A. Belyaeva, N.V. Chezhina, “Phase transitions and magnetic properties of BiNb$_{1-x}$Fe$_x$O$_{4-\delta}$”, Ceram. Intern., 43 (2017), 16919–16923 | DOI