Intellectual ways of solving the problem of constructing the optimal route of an unmanned aerial vehicle in the conditions of counteraction
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 4, pp. 431-443.

Voir la notice de l'article provenant de la source Math-Net.Ru

Traditional and modern algorithms for solving the problem of planning the optimal route of an unmanned aerial vehicle under the influence of low-altitude air defense systems is presented in the paper. The principles of the methods, as well as, the tools used in them are described. Classical approaches of reinforcement learning and its modification using artificial neural networks are considered. The proposed algorithms are implemented and simulation with the use of these algorithms is carried out. A comparative analysis of the results is performed and conclusions about the effectiveness of the algorithms are presented.
Keywords: unmanned aerial vehicle, artificial neural network, reinforcement learning.
Mots-clés : information technologies, intelligent agent
@article{JSFU_2022_15_4_a1,
     author = {Igor N. Ischuk and Bogdan K. Telnykh and Valeriy N. Tyapkin and Nikolay S. Kremez},
     title = {Intellectual ways of solving the problem of constructing the optimal route of an unmanned aerial vehicle in the conditions of counteraction},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {431--443},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a1/}
}
TY  - JOUR
AU  - Igor N. Ischuk
AU  - Bogdan K. Telnykh
AU  - Valeriy N. Tyapkin
AU  - Nikolay S. Kremez
TI  - Intellectual ways of solving the problem of constructing the optimal route of an unmanned aerial vehicle in the conditions of counteraction
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2022
SP  - 431
EP  - 443
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a1/
LA  - en
ID  - JSFU_2022_15_4_a1
ER  - 
%0 Journal Article
%A Igor N. Ischuk
%A Bogdan K. Telnykh
%A Valeriy N. Tyapkin
%A Nikolay S. Kremez
%T Intellectual ways of solving the problem of constructing the optimal route of an unmanned aerial vehicle in the conditions of counteraction
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 431-443
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a1/
%G en
%F JSFU_2022_15_4_a1
Igor N. Ischuk; Bogdan K. Telnykh; Valeriy N. Tyapkin; Nikolay S. Kremez. Intellectual ways of solving the problem of constructing the optimal route of an unmanned aerial vehicle in the conditions of counteraction. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 4, pp. 431-443. http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a1/

[1] A.P.Tanchenko, A.M.Fedulin, R.R.Bikmaev, R.N.Sadekov, “UAV Navigation System Autonomous Correction Algorithm Based on Road and River Network Recognition”, Journal Gyroscopy and Navigation, 2020, no. 11, 293–299 (in Russian)

[2] I.N.Ishchuk, A.A.Dolgov, “Somputer model and algorithm of construction of phono-target situation of remote monitoring areas by thermal tomograms taking into account their geographical location and meteorological conditions”, J. Sib. Fed. Univ. Eng. $\$ Technol., 13:3 (2020), 350–360 (in Russian)

[3] I.N.Ischuk, A.A.Dolgov, M.A.Likhachev, B.K.Telnykh, “Model for calculating the thermophysical characteristics of materials according to multispectral multi-temporal photographic survey of the earth's surface”, Journal of Siberian Federal University, Technics and technologies, 13:7 (2020), 906–918 (in Russian)

[4] R.S.Sutton, A.G.Barto, Reinforcement Learning: An Introduction, A Bradford Book Publ., 1998

[5] B.Nikhil, L.Nicholas, Fundamentals of Deep Learning. Designing Next-Generation Machine Intelligence Algorithms, Mann, Ivanov and Ferber, M., 2020 (in Russian)

[6] Yu.Liu, PyTorch 1.x Reinforcement Learning Cookbook, DMK Press, M., 2020 (in Russian)

[7] Ch.Yan, X.Xiang, Ch Wang, “Towards Real-Time Path Planning through Deep Reinforcement Learning for a UAV in Dynamic Environments”, Journal of Intelligent $\$ Robotic Systems, 2019

[8] V.Mnih, “Human-level control through deep reinforcement learning”, Nature, 518:518 (2015), 529–533

[9] Keras API docs, official site: , 2021 https://keras.io/api

[10] I.Goodfellow, Y.Bengio, A.Courville, Deep Learning, MIT Press, 2016

[11] D.R.Liu, H.Li, D.Wang, “Feature selection and feature learning for high-dimensional batch reinforcement learning: A survey”, Int. J. of Automation and Computing, 12 (2015), 229–242

[12] D.A.Korobov, S.A.Belyaev, “Modern approaches to training intelligent agents in the atari environment”, Software $\$ Systems, 31:2 (2018), 284–290 (in Russian)