Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2022_15_4_a1, author = {Igor N. Ischuk and Bogdan K. Telnykh and Valeriy N. Tyapkin and Nikolay S. Kremez}, title = {Intellectual ways of solving the problem of constructing the optimal route of an unmanned aerial vehicle in the conditions of counteraction}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {431--443}, publisher = {mathdoc}, volume = {15}, number = {4}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a1/} }
TY - JOUR AU - Igor N. Ischuk AU - Bogdan K. Telnykh AU - Valeriy N. Tyapkin AU - Nikolay S. Kremez TI - Intellectual ways of solving the problem of constructing the optimal route of an unmanned aerial vehicle in the conditions of counteraction JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2022 SP - 431 EP - 443 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a1/ LA - en ID - JSFU_2022_15_4_a1 ER -
%0 Journal Article %A Igor N. Ischuk %A Bogdan K. Telnykh %A Valeriy N. Tyapkin %A Nikolay S. Kremez %T Intellectual ways of solving the problem of constructing the optimal route of an unmanned aerial vehicle in the conditions of counteraction %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2022 %P 431-443 %V 15 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a1/ %G en %F JSFU_2022_15_4_a1
Igor N. Ischuk; Bogdan K. Telnykh; Valeriy N. Tyapkin; Nikolay S. Kremez. Intellectual ways of solving the problem of constructing the optimal route of an unmanned aerial vehicle in the conditions of counteraction. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 4, pp. 431-443. http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a1/
[1] A.P.Tanchenko, A.M.Fedulin, R.R.Bikmaev, R.N.Sadekov, “UAV Navigation System Autonomous Correction Algorithm Based on Road and River Network Recognition”, Journal Gyroscopy and Navigation, 2020, no. 11, 293–299 (in Russian)
[2] I.N.Ishchuk, A.A.Dolgov, “Somputer model and algorithm of construction of phono-target situation of remote monitoring areas by thermal tomograms taking into account their geographical location and meteorological conditions”, J. Sib. Fed. Univ. Eng. $\$ Technol., 13:3 (2020), 350–360 (in Russian)
[3] I.N.Ischuk, A.A.Dolgov, M.A.Likhachev, B.K.Telnykh, “Model for calculating the thermophysical characteristics of materials according to multispectral multi-temporal photographic survey of the earth's surface”, Journal of Siberian Federal University, Technics and technologies, 13:7 (2020), 906–918 (in Russian)
[4] R.S.Sutton, A.G.Barto, Reinforcement Learning: An Introduction, A Bradford Book Publ., 1998
[5] B.Nikhil, L.Nicholas, Fundamentals of Deep Learning. Designing Next-Generation Machine Intelligence Algorithms, Mann, Ivanov and Ferber, M., 2020 (in Russian)
[6] Yu.Liu, PyTorch 1.x Reinforcement Learning Cookbook, DMK Press, M., 2020 (in Russian)
[7] Ch.Yan, X.Xiang, Ch Wang, “Towards Real-Time Path Planning through Deep Reinforcement Learning for a UAV in Dynamic Environments”, Journal of Intelligent $\$ Robotic Systems, 2019
[8] V.Mnih, “Human-level control through deep reinforcement learning”, Nature, 518:518 (2015), 529–533
[9] Keras API docs, official site: , 2021 https://keras.io/api
[10] I.Goodfellow, Y.Bengio, A.Courville, Deep Learning, MIT Press, 2016
[11] D.R.Liu, H.Li, D.Wang, “Feature selection and feature learning for high-dimensional batch reinforcement learning: A survey”, Int. J. of Automation and Computing, 12 (2015), 229–242
[12] D.A.Korobov, S.A.Belyaev, “Modern approaches to training intelligent agents in the atari environment”, Software $\$ Systems, 31:2 (2018), 284–290 (in Russian)