Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2022_15_3_a9, author = {Ali Turab}, title = {A fixed point approach to study a class of probabilistic functional equations arising in the psychological theory of learning}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {366--377}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a9/} }
TY - JOUR AU - Ali Turab TI - A fixed point approach to study a class of probabilistic functional equations arising in the psychological theory of learning JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2022 SP - 366 EP - 377 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a9/ LA - en ID - JSFU_2022_15_3_a9 ER -
%0 Journal Article %A Ali Turab %T A fixed point approach to study a class of probabilistic functional equations arising in the psychological theory of learning %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2022 %P 366-377 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a9/ %G en %F JSFU_2022_15_3_a9
Ali Turab. A fixed point approach to study a class of probabilistic functional equations arising in the psychological theory of learning. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 3, pp. 366-377. http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a9/
[1] A.A. Bush, T.R. Wilson, J. Exp. Psych., 51 (1956), Two-choice behavior of paradise fish | DOI
[2] R. Bush, F. Mosteller, Stochastic models for learning, Wiley, New York, 1955 | MR | Zbl
[3] V.I. Istrăţescu, “On a functional equation”, J. Math. Anal. Appl., 56:1 (1976), 133–136 | DOI | MR | Zbl
[4] W. Sintunavarat, A. Turab, “Some particular aspects of certain type of probabilistic predator-prey model with experimenter-subject-controlled events and the fixed point method”, AIP Conference Proceedings, 2423 (2021), 060005 | DOI
[5] A. Turab, W. Sintunavarat, “On analytic model for two-choice behavior of the paradise fish based on the fixed point method”, J. Fixed Point Theory Appl., 21 (2019), 56 | DOI | MR | Zbl
[6] V. Berinde, A.R. Khan, “On a functional equation arising in mathematical biology and theory of learning”, Creat. Math. Inform., 24:1 (2015), 9–16 | DOI | MR | Zbl
[7] A. Turab, W. Sintunavarat, “On the solution of the traumatic avoidance learning model approached by the Banach fixed point theorem”, J. Fixed Point Theory Appl., 22 (2020), 50 | DOI | MR | Zbl
[8] W.K. Estes, J.H. Straughan, “Analysis of a verbal conditioning situation in terms of statistical learning theory”, Journal of Experimental Psychology, 47 (1954), 225–234 | DOI
[9] A. Turab, W. Sintunavarat, “On the solutions of the two preys and one predator type model approached by the fixed point theory”, Sadhana, 45 (2020), 211 | DOI | MR
[10] A. Turab, W. G. Park, W. Ali, “Existence, uniqueness, and stability analysis of the probabilistic functional equation emerging in mathematical biology and the theory of learning”, Symmetry, 13 (2021), 1313 | DOI
[11] D.A. Grant, H.W. Hake, J.P. Hornseth, “Acquisition and extinction of a verbal conditioned response with differing percentages of reinforcement”, Journal of Experimental Psychology, 42 (1951), 1–5 | DOI
[12] L.G. Humphreys, “Acquisition and extinction of verbal expectations in a situation analogous to conditioning”, Journal of Experimental Psychology, 25 (1939), 294–301 | DOI
[13] M.E. Jarvik, “Probability learning and a negative recency effect in the serial anticipation of alternative symbols”, Journal of Experimental Psychology, 41 (1951), 291–297 | DOI
[14] S. Banach, “Sur les operations dans les ensembles abstraits et leur applications aux equations integrales”, Fund. Math., 3 (1922), 133–181 | DOI | MR | Zbl
[15] A. Turab, W. Sintunavarat, “Corrigendum: On analytic model for two-choice behavior of the paradise fish based on the fixed point method”, J. Fixed Point Theory Appl., 21 (2019), 56 ; J. Fixed Point Theory Appl., 22 (2020), 82 | DOI | MR | Zbl | DOI | MR | Zbl
[16] D.H. Hyers, G. Isac, Th.M. Rassias, Stability of functional equations in several variables, Birkhauser, Basel, 1998 | MR | Zbl
[17] J.S. Morales, E.M. Rojas, “Hyers-Ulam and Hyers-Ulam-Rassias stability of nonlinear integral equations with delay”, Int. J. Nonlinear Anal. Appl., 2:2 (2011), 1–6 | DOI | MR | Zbl