A fixed point approach to study a class of probabilistic functional equations arising in the psychological theory of learning
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 3, pp. 366-377.

Voir la notice de l'article provenant de la source Math-Net.Ru

Many biological and learning theory models have been investigated using probabilistic functional equations. This article focuses on a specific kind of predator–prey relation in which a predator has two prey options, each with a probability of $x$ and $1-x$, respectively. Our aim is to investigate the animal's responses in such situations by proposing a general probabilistic functional equation. The noteworthy fixed-point results are used to investigate the existence, uniqueness, and stability of solutions to the proposed functional equation. An example is also given to illustrate the importance of our results in this area of research.
Keywords: probabilistic functional equations, stability, fixed points.
@article{JSFU_2022_15_3_a9,
     author = {Ali Turab},
     title = {A fixed point approach to study a class of probabilistic functional equations arising in the psychological theory of learning},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {366--377},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a9/}
}
TY  - JOUR
AU  - Ali Turab
TI  - A fixed point approach to study a class of probabilistic functional equations arising in the psychological theory of learning
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2022
SP  - 366
EP  - 377
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a9/
LA  - en
ID  - JSFU_2022_15_3_a9
ER  - 
%0 Journal Article
%A Ali Turab
%T A fixed point approach to study a class of probabilistic functional equations arising in the psychological theory of learning
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 366-377
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a9/
%G en
%F JSFU_2022_15_3_a9
Ali Turab. A fixed point approach to study a class of probabilistic functional equations arising in the psychological theory of learning. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 3, pp. 366-377. http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a9/

[1] A.A. Bush, T.R. Wilson, J. Exp. Psych., 51 (1956), Two-choice behavior of paradise fish | DOI

[2] R. Bush, F. Mosteller, Stochastic models for learning, Wiley, New York, 1955 | MR | Zbl

[3] V.I. Istrăţescu, “On a functional equation”, J. Math. Anal. Appl., 56:1 (1976), 133–136 | DOI | MR | Zbl

[4] W. Sintunavarat, A. Turab, “Some particular aspects of certain type of probabilistic predator-prey model with experimenter-subject-controlled events and the fixed point method”, AIP Conference Proceedings, 2423 (2021), 060005 | DOI

[5] A. Turab, W. Sintunavarat, “On analytic model for two-choice behavior of the paradise fish based on the fixed point method”, J. Fixed Point Theory Appl., 21 (2019), 56 | DOI | MR | Zbl

[6] V. Berinde, A.R. Khan, “On a functional equation arising in mathematical biology and theory of learning”, Creat. Math. Inform., 24:1 (2015), 9–16 | DOI | MR | Zbl

[7] A. Turab, W. Sintunavarat, “On the solution of the traumatic avoidance learning model approached by the Banach fixed point theorem”, J. Fixed Point Theory Appl., 22 (2020), 50 | DOI | MR | Zbl

[8] W.K. Estes, J.H. Straughan, “Analysis of a verbal conditioning situation in terms of statistical learning theory”, Journal of Experimental Psychology, 47 (1954), 225–234 | DOI

[9] A. Turab, W. Sintunavarat, “On the solutions of the two preys and one predator type model approached by the fixed point theory”, Sadhana, 45 (2020), 211 | DOI | MR

[10] A. Turab, W. G. Park, W. Ali, “Existence, uniqueness, and stability analysis of the probabilistic functional equation emerging in mathematical biology and the theory of learning”, Symmetry, 13 (2021), 1313 | DOI

[11] D.A. Grant, H.W. Hake, J.P. Hornseth, “Acquisition and extinction of a verbal conditioned response with differing percentages of reinforcement”, Journal of Experimental Psychology, 42 (1951), 1–5 | DOI

[12] L.G. Humphreys, “Acquisition and extinction of verbal expectations in a situation analogous to conditioning”, Journal of Experimental Psychology, 25 (1939), 294–301 | DOI

[13] M.E. Jarvik, “Probability learning and a negative recency effect in the serial anticipation of alternative symbols”, Journal of Experimental Psychology, 41 (1951), 291–297 | DOI

[14] S. Banach, “Sur les operations dans les ensembles abstraits et leur applications aux equations integrales”, Fund. Math., 3 (1922), 133–181 | DOI | MR | Zbl

[15] A. Turab, W. Sintunavarat, “Corrigendum: On analytic model for two-choice behavior of the paradise fish based on the fixed point method”, J. Fixed Point Theory Appl., 21 (2019), 56 ; J. Fixed Point Theory Appl., 22 (2020), 82 | DOI | MR | Zbl | DOI | MR | Zbl

[16] D.H. Hyers, G. Isac, Th.M. Rassias, Stability of functional equations in several variables, Birkhauser, Basel, 1998 | MR | Zbl

[17] J.S. Morales, E.M. Rojas, “Hyers-Ulam and Hyers-Ulam-Rassias stability of nonlinear integral equations with delay”, Int. J. Nonlinear Anal. Appl., 2:2 (2011), 1–6 | DOI | MR | Zbl