Idempotent values of commutators involving generalized derivations
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 3, pp. 356-365

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present article, we characterize generalized derivations and left multipliers of prime rings involving commutators with idempotent values. Precisely, we prove that if a prime ring of characteristic different from $2$ admits a generalized derivation $G$ with an associative nonzero derivation $g$ of $R$ such that $[G(u),u]^{n}=[G(u),u]$ for all $u\in\{[x,y]:x,y\in L\},$ where $L$ a noncentral Lie ideal of $R$ and $n>1$ is a fixed integer, then one of the following holds: $R$ satisfies $s_{4}$ and there exists $\lambda\in C,$ the extended centroid of $R$ such that $G(x)=ax+xa+\lambda x$ for all $x\in R,$ where $a\in U,$ the Utumi quotient ring of $R,$ there exists $\gamma\in C$ such that $G(x)=\gamma x$ for all $x\in R.$ As an application, we describe the structure of left multipliers of prime rings satisfying the condition $([T^m (u),u] )^{n}=[T^m (u),u]$ for all $u\in \{[x,y]: x,y\in L\},$ where $m,n>1$ are fixed integers. In the end, we give an example showing that the hypothesis of our main theorem is not redundant.
Keywords: prime ring, Lie ideal, generalized derivation, GPI.
@article{JSFU_2022_15_3_a8,
     author = {Gurninder S. Sandhu and Shakir Ali},
     title = {Idempotent values of commutators involving generalized derivations},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {356--365},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a8/}
}
TY  - JOUR
AU  - Gurninder S. Sandhu
AU  - Shakir Ali
TI  - Idempotent values of commutators involving generalized derivations
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2022
SP  - 356
EP  - 365
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a8/
LA  - en
ID  - JSFU_2022_15_3_a8
ER  - 
%0 Journal Article
%A Gurninder S. Sandhu
%A Shakir Ali
%T Idempotent values of commutators involving generalized derivations
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 356-365
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a8/
%G en
%F JSFU_2022_15_3_a8
Gurninder S. Sandhu; Shakir Ali. Idempotent values of commutators involving generalized derivations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 3, pp. 356-365. http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a8/