Idempotent values of commutators involving generalized derivations
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 3, pp. 356-365.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present article, we characterize generalized derivations and left multipliers of prime rings involving commutators with idempotent values. Precisely, we prove that if a prime ring of characteristic different from $2$ admits a generalized derivation $G$ with an associative nonzero derivation $g$ of $R$ such that $[G(u),u]^{n}=[G(u),u]$ for all $u\in\{[x,y]:x,y\in L\},$ where $L$ a noncentral Lie ideal of $R$ and $n>1$ is a fixed integer, then one of the following holds: $R$ satisfies $s_{4}$ and there exists $\lambda\in C,$ the extended centroid of $R$ such that $G(x)=ax+xa+\lambda x$ for all $x\in R,$ where $a\in U,$ the Utumi quotient ring of $R,$ there exists $\gamma\in C$ such that $G(x)=\gamma x$ for all $x\in R.$ As an application, we describe the structure of left multipliers of prime rings satisfying the condition $([T^m (u),u] )^{n}=[T^m (u),u]$ for all $u\in \{[x,y]: x,y\in L\},$ where $m,n>1$ are fixed integers. In the end, we give an example showing that the hypothesis of our main theorem is not redundant.
Keywords: prime ring, Lie ideal, generalized derivation, GPI.
@article{JSFU_2022_15_3_a8,
     author = {Gurninder S. Sandhu and Shakir Ali},
     title = {Idempotent values of commutators involving generalized derivations},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {356--365},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a8/}
}
TY  - JOUR
AU  - Gurninder S. Sandhu
AU  - Shakir Ali
TI  - Idempotent values of commutators involving generalized derivations
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2022
SP  - 356
EP  - 365
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a8/
LA  - en
ID  - JSFU_2022_15_3_a8
ER  - 
%0 Journal Article
%A Gurninder S. Sandhu
%A Shakir Ali
%T Idempotent values of commutators involving generalized derivations
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 356-365
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a8/
%G en
%F JSFU_2022_15_3_a8
Gurninder S. Sandhu; Shakir Ali. Idempotent values of commutators involving generalized derivations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 3, pp. 356-365. http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a8/

[1] M. Ashraf, S.A. Pary, M.A. Raza, “$m$-potent commutators involving skew derivations and multilinear polynomials”, Georgian Math. J. (to appear) | DOI | MR

[2] M. Ashraf, M.A. Raza, S.A. Pary, “Commutators having idempotent values with automorphisms in semi-prime rings”, Math. Reports, 20(70):1 (2018), 51–57 | MR | Zbl

[3] K.I. Beidar, W.S. Martindale III, A.V. Mikhalev, Rings with Generalized Identities, Pure and Applied Math., Marcel Dekker, New York, 1996 | MR | Zbl

[4] J. Bergen, I.N. Herstein, J.W. Kerr, “Lie ideals and derivations of prime rings”, J. Algebra, 71 (1981), 259–267 | DOI | MR | Zbl

[5] M. Brešar, “Commuting traces of biadditive mappings, commutativity preserving mappings and Lie mappings”, Trans. Amer. Math. Soc., 335:2 (1993), 525–546 | DOI | MR | Zbl

[6] L. Carini, V. De Filippis, “Commutators with power central values on a Lie ideal”, Pacific J. Math., 193:2 (2000), 269–278 | DOI | MR | Zbl

[7] C.L. Chuang, “GPIs having coefficients in Utumi quotient rings”, Proc. Amer. Math. Soc., 103 (1988), 723–728 | DOI | MR | Zbl

[8] T.S. Erickson, W.S. Martindale III, J.M. Osborn, “Prime nonassociative algebras”, Pacific J. Math., 60 (1975), 49–63 | DOI | MR | Zbl

[9] V. De Filippis, “Generalized derivations and commutators with nilpotent values on Lie ideals”, Tamsui Oxf. J. Math. Sci., 22 (2006), 167–175 | MR | Zbl

[10] V. De Filippis, M.A. Raza, N. Rehman, “Commutators with idempotent values on multilinear polynomials in prime rings”, Proc. Math. Sci., 127 (2017), 91–98 | DOI | MR | Zbl

[11] I.N. Herstein, “A generalization of a theorem of Jacobson”, Amer. J. Math., 73:4 (1951), 75–762 | DOI | MR

[12] I.N. Herstein, “A condition for the commutativity of the rings”, Canad. J. Math., 9 (1957), 583–586 | DOI | MR | Zbl

[13] B. Hvala, “Generalized derivations in rings”, Commun. Algebra, 26:4 (1998), 1147–1166 | DOI | MR | Zbl

[14] N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Pub., 37, Providence, 1964 | MR

[15] N. Jacobson, “Structure theory for algebraic algebras of bounded degree”, Annals of Math., 46 (1945), 695–707 | DOI | MR | Zbl

[16] V.K. Kharchenko, “Differential identities of prime rings”, Algebra Logic, 17 (1978), 155–168 | DOI | MR

[17] C. Lanski, “An Engel condition with derivation”, Proc. Amer. Math. Soc., 118:3 (1993), 731–734 | DOI | MR | Zbl

[18] T.K. Lee, “Generalized derivations of left faithful rings”, Commun. Algebra, 27 (1999), 4057–4073 | DOI | MR | Zbl

[19] W.S. Martindale III, “Prime rings satisfying a generalized polynomial identity”, J. Algebra, 12 (1969), 576–584 | DOI | MR | Zbl

[20] J. Pinter-Lucke, “Commutativity conditions for rings 1950–2005”, Expo. Math., 25 (2007), 165–174 | DOI | MR | Zbl

[21] E.C. Posner, “Derivations in prime rings”, Proc. Amer. Math. Soc., 8 (1957), 1093–1100 | DOI | MR

[22] G. Scudo, A.Z. Ansari, “Generalized derivations on Lie ideals and power values on prime rings”, Math. Slovaca, 65:5 (2015), 975–980 | DOI | MR | Zbl

[23] J. Vukman, “Centralizer on semiprime rings”, Comment. Math. Univ. Carolinae, 42 (2001), 245–273 | MR

[24] T.L. Wong, “Derivations with power values on multilinear polynomials”, Algebra Colloq., 3 (1996), 369–378 | MR | Zbl

[25] B. Zalar, “On centralizer of semiprime rings”, Comment. Math. Univ. Carolinae, 32 (1991), 609–614 | MR | Zbl