Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2022_15_3_a8, author = {Gurninder S. Sandhu and Shakir Ali}, title = {Idempotent values of commutators involving generalized derivations}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {356--365}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a8/} }
TY - JOUR AU - Gurninder S. Sandhu AU - Shakir Ali TI - Idempotent values of commutators involving generalized derivations JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2022 SP - 356 EP - 365 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a8/ LA - en ID - JSFU_2022_15_3_a8 ER -
%0 Journal Article %A Gurninder S. Sandhu %A Shakir Ali %T Idempotent values of commutators involving generalized derivations %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2022 %P 356-365 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a8/ %G en %F JSFU_2022_15_3_a8
Gurninder S. Sandhu; Shakir Ali. Idempotent values of commutators involving generalized derivations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 3, pp. 356-365. http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a8/
[1] M. Ashraf, S.A. Pary, M.A. Raza, “$m$-potent commutators involving skew derivations and multilinear polynomials”, Georgian Math. J. (to appear) | DOI | MR
[2] M. Ashraf, M.A. Raza, S.A. Pary, “Commutators having idempotent values with automorphisms in semi-prime rings”, Math. Reports, 20(70):1 (2018), 51–57 | MR | Zbl
[3] K.I. Beidar, W.S. Martindale III, A.V. Mikhalev, Rings with Generalized Identities, Pure and Applied Math., Marcel Dekker, New York, 1996 | MR | Zbl
[4] J. Bergen, I.N. Herstein, J.W. Kerr, “Lie ideals and derivations of prime rings”, J. Algebra, 71 (1981), 259–267 | DOI | MR | Zbl
[5] M. Brešar, “Commuting traces of biadditive mappings, commutativity preserving mappings and Lie mappings”, Trans. Amer. Math. Soc., 335:2 (1993), 525–546 | DOI | MR | Zbl
[6] L. Carini, V. De Filippis, “Commutators with power central values on a Lie ideal”, Pacific J. Math., 193:2 (2000), 269–278 | DOI | MR | Zbl
[7] C.L. Chuang, “GPIs having coefficients in Utumi quotient rings”, Proc. Amer. Math. Soc., 103 (1988), 723–728 | DOI | MR | Zbl
[8] T.S. Erickson, W.S. Martindale III, J.M. Osborn, “Prime nonassociative algebras”, Pacific J. Math., 60 (1975), 49–63 | DOI | MR | Zbl
[9] V. De Filippis, “Generalized derivations and commutators with nilpotent values on Lie ideals”, Tamsui Oxf. J. Math. Sci., 22 (2006), 167–175 | MR | Zbl
[10] V. De Filippis, M.A. Raza, N. Rehman, “Commutators with idempotent values on multilinear polynomials in prime rings”, Proc. Math. Sci., 127 (2017), 91–98 | DOI | MR | Zbl
[11] I.N. Herstein, “A generalization of a theorem of Jacobson”, Amer. J. Math., 73:4 (1951), 75–762 | DOI | MR
[12] I.N. Herstein, “A condition for the commutativity of the rings”, Canad. J. Math., 9 (1957), 583–586 | DOI | MR | Zbl
[13] B. Hvala, “Generalized derivations in rings”, Commun. Algebra, 26:4 (1998), 1147–1166 | DOI | MR | Zbl
[14] N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Pub., 37, Providence, 1964 | MR
[15] N. Jacobson, “Structure theory for algebraic algebras of bounded degree”, Annals of Math., 46 (1945), 695–707 | DOI | MR | Zbl
[16] V.K. Kharchenko, “Differential identities of prime rings”, Algebra Logic, 17 (1978), 155–168 | DOI | MR
[17] C. Lanski, “An Engel condition with derivation”, Proc. Amer. Math. Soc., 118:3 (1993), 731–734 | DOI | MR | Zbl
[18] T.K. Lee, “Generalized derivations of left faithful rings”, Commun. Algebra, 27 (1999), 4057–4073 | DOI | MR | Zbl
[19] W.S. Martindale III, “Prime rings satisfying a generalized polynomial identity”, J. Algebra, 12 (1969), 576–584 | DOI | MR | Zbl
[20] J. Pinter-Lucke, “Commutativity conditions for rings 1950–2005”, Expo. Math., 25 (2007), 165–174 | DOI | MR | Zbl
[21] E.C. Posner, “Derivations in prime rings”, Proc. Amer. Math. Soc., 8 (1957), 1093–1100 | DOI | MR
[22] G. Scudo, A.Z. Ansari, “Generalized derivations on Lie ideals and power values on prime rings”, Math. Slovaca, 65:5 (2015), 975–980 | DOI | MR | Zbl
[23] J. Vukman, “Centralizer on semiprime rings”, Comment. Math. Univ. Carolinae, 42 (2001), 245–273 | MR
[24] T.L. Wong, “Derivations with power values on multilinear polynomials”, Algebra Colloq., 3 (1996), 369–378 | MR | Zbl
[25] B. Zalar, “On centralizer of semiprime rings”, Comment. Math. Univ. Carolinae, 32 (1991), 609–614 | MR | Zbl