Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2022_15_3_a4, author = {Alexander V. Chueshev and Victor V. Chueshev}, title = {Variational formulas of~the~monodromy group for~a~third-order equation on~a~compact {Riemann} surface}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {308--318}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a4/} }
TY - JOUR AU - Alexander V. Chueshev AU - Victor V. Chueshev TI - Variational formulas of~the~monodromy group for~a~third-order equation on~a~compact Riemann surface JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2022 SP - 308 EP - 318 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a4/ LA - en ID - JSFU_2022_15_3_a4 ER -
%0 Journal Article %A Alexander V. Chueshev %A Victor V. Chueshev %T Variational formulas of~the~monodromy group for~a~third-order equation on~a~compact Riemann surface %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2022 %P 308-318 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a4/ %G en %F JSFU_2022_15_3_a4
Alexander V. Chueshev; Victor V. Chueshev. Variational formulas of~the~monodromy group for~a~third-order equation on~a~compact Riemann surface. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 3, pp. 308-318. http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a4/
[1] D.A. Hejhal, “Monodromy groups for higher-order differentials equation”, Bull. Amer. Math. Soc., 81:3 (1975), 590–592 | DOI | MR | Zbl
[2] D.A. Hejhal, “Monodromy groups and linearly polymorphic functions”, Acta Math., 135:1-2 (1975), 1–55 | DOI | MR | Zbl
[3] D.A. Hejhal, “The variational theory of linearly polymorphic functions”, J. d'Analyse Math., 30 (1976), 215–264 | DOI | MR | Zbl
[4] V.V. Chueshev, “An Explicit Variational Formula for the Monodromy Group”, Siberian Adv. Math., 15:22 (2005), 1–32 (in Russian) ; Mat. Tr., 7:2 (2004), 126–158 | MR | Zbl | MR
[5] H.M. Farkas, I. Kra, Riemann surfaces, Grad. Text's Math., 71, Springer, New-York, 1992 | DOI | MR | Zbl
[6] M.I. Tulina, “Explicit variational formulas for third-order equations on Riemann surfaces”, Journal of Siberian Federal University. Mathematics $\$ Physics, 6:3 (2013), 365–375 | Zbl
[7] A.V. Chueshev, V.V. Chueshev, “The residue theorem and an analog of P. Appell's formula for finite Riemann surface”, Science Evolution, 1:1 (2016), 40–45 | DOI | MR