On approximation of empirical Kac processes under general random censorship model
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 3, pp. 292-307.

Voir la notice de l'article provenant de la source Math-Net.Ru

A general random censorship model is considered in the paper. Approximation results are proved for empirical Kac processes. This model includes important special cases such as random censorship on the right and competing risks model. The obtained results use strong approximation theory and optimal approximation rates are built. Cumulative hazard processes are also investigated in a similar manner in the general setting. These results are also used for estimating of characteristic functions in random censorship model on the right.
Keywords: censored data, competing risks, empirical estimates, Kac estimate, strong approximation, Gaussian process, characteristic function.
@article{JSFU_2022_15_3_a3,
     author = {Abdurahim A. Abdushukurov and Gulnoz S. Saifulloeva},
     title = {On approximation of empirical {Kac} processes under general random censorship model},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {292--307},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a3/}
}
TY  - JOUR
AU  - Abdurahim A. Abdushukurov
AU  - Gulnoz S. Saifulloeva
TI  - On approximation of empirical Kac processes under general random censorship model
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2022
SP  - 292
EP  - 307
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a3/
LA  - en
ID  - JSFU_2022_15_3_a3
ER  - 
%0 Journal Article
%A Abdurahim A. Abdushukurov
%A Gulnoz S. Saifulloeva
%T On approximation of empirical Kac processes under general random censorship model
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 292-307
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a3/
%G en
%F JSFU_2022_15_3_a3
Abdurahim A. Abdushukurov; Gulnoz S. Saifulloeva. On approximation of empirical Kac processes under general random censorship model. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 3, pp. 292-307. http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a3/

[1] A.A. Abdushukurov, “Nonparametric estimation of the distribution function based on relative risk function”, Commun. Statis. Th. Meth., 27:8 (1998), 1991–2012 | DOI | MR | Zbl

[2] A.A. Abdushukurov, “On nonparametric estimation of reliability indices by censored samples”, Theory Probab. Appl., 43:1 (1999), 3–11 | DOI | MR

[3] A.A. Abdushukurov, Statistics of incomplete observations, University Press, Tashkent, 2009 (in Russian)

[4] M.D. Burke, Csörgő, L. Horváth, “Strong approximations of some biometric estimates under random censorship”, Z. Wahrschein. Verw. Gebiete, 56 (1981), 87–112 | DOI | MR | Zbl

[5] M.D. Burke, S. Csörgő, L. Horváth, “A correction to and improvement of “Strong approximations of some biometric estimates under random censorship””, Probab. Th. Ret. Fields, 79 (1988), 51–57 | DOI | MR | Zbl

[6] S. Csörgő, “Strong approximation of empirical Kac processes”, Carleton Math. Lect. Note, 26 (1980), 71–86

[7] S. Csörgő, L. Horvath, “On random censorship from the right”, Acta. Sci. Math., 44 (1982), 23–34 | MR | Zbl

[8] A. Dvoretzky, J. Kiefer, J. Wolfowitz, “Asymptotic minimax character of the sample distribution function and of the multinomial estimator”, Ann. Math. Statist., 27 (1956), 642–669 | DOI | MR | Zbl

[9] M. Kac, “On denations between theoretical and empirical distributions”, Proc. Nat. Acad. Sci. USA, 35 (1949), 252–257 | DOI | MR | Zbl

[10] D.M. Mason, Classical empirical process theory and wighted approximation, Comunicaciones del CIMAT, N.I-15-03/09-11-2015/, PE/CIMAT

[11] D.M. Mason, Selected Definition and Results from Modern Empirical Theory, Comunicaciones del CIMAT, N.I-17-01, 16.03.2017, PE

[12] P. Massart, “The tight constant in the Dvoretzky-Kiefer-Wolfowits inequality”, Ann. Probab., 18:3 (1990), 1269–1283 | DOI | MR | Zbl

[13] W.W. Petrov, Limit theorems for sum of random variables, Nauka, M., 1987 (in Russian) | MR

[14] A.W. Skorokhod, Random processes of independent increments, Nauka, M., 1964 | MR