Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2022_15_3_a3, author = {Abdurahim A. Abdushukurov and Gulnoz S. Saifulloeva}, title = {On approximation of empirical {Kac} processes under general random censorship model}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {292--307}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a3/} }
TY - JOUR AU - Abdurahim A. Abdushukurov AU - Gulnoz S. Saifulloeva TI - On approximation of empirical Kac processes under general random censorship model JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2022 SP - 292 EP - 307 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a3/ LA - en ID - JSFU_2022_15_3_a3 ER -
%0 Journal Article %A Abdurahim A. Abdushukurov %A Gulnoz S. Saifulloeva %T On approximation of empirical Kac processes under general random censorship model %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2022 %P 292-307 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a3/ %G en %F JSFU_2022_15_3_a3
Abdurahim A. Abdushukurov; Gulnoz S. Saifulloeva. On approximation of empirical Kac processes under general random censorship model. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 3, pp. 292-307. http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a3/
[1] A.A. Abdushukurov, “Nonparametric estimation of the distribution function based on relative risk function”, Commun. Statis. Th. Meth., 27:8 (1998), 1991–2012 | DOI | MR | Zbl
[2] A.A. Abdushukurov, “On nonparametric estimation of reliability indices by censored samples”, Theory Probab. Appl., 43:1 (1999), 3–11 | DOI | MR
[3] A.A. Abdushukurov, Statistics of incomplete observations, University Press, Tashkent, 2009 (in Russian)
[4] M.D. Burke, Csörgő, L. Horváth, “Strong approximations of some biometric estimates under random censorship”, Z. Wahrschein. Verw. Gebiete, 56 (1981), 87–112 | DOI | MR | Zbl
[5] M.D. Burke, S. Csörgő, L. Horváth, “A correction to and improvement of “Strong approximations of some biometric estimates under random censorship””, Probab. Th. Ret. Fields, 79 (1988), 51–57 | DOI | MR | Zbl
[6] S. Csörgő, “Strong approximation of empirical Kac processes”, Carleton Math. Lect. Note, 26 (1980), 71–86
[7] S. Csörgő, L. Horvath, “On random censorship from the right”, Acta. Sci. Math., 44 (1982), 23–34 | MR | Zbl
[8] A. Dvoretzky, J. Kiefer, J. Wolfowitz, “Asymptotic minimax character of the sample distribution function and of the multinomial estimator”, Ann. Math. Statist., 27 (1956), 642–669 | DOI | MR | Zbl
[9] M. Kac, “On denations between theoretical and empirical distributions”, Proc. Nat. Acad. Sci. USA, 35 (1949), 252–257 | DOI | MR | Zbl
[10] D.M. Mason, Classical empirical process theory and wighted approximation, Comunicaciones del CIMAT, N.I-15-03/09-11-2015/, PE/CIMAT
[11] D.M. Mason, Selected Definition and Results from Modern Empirical Theory, Comunicaciones del CIMAT, N.I-17-01, 16.03.2017, PE
[12] P. Massart, “The tight constant in the Dvoretzky-Kiefer-Wolfowits inequality”, Ann. Probab., 18:3 (1990), 1269–1283 | DOI | MR | Zbl
[13] W.W. Petrov, Limit theorems for sum of random variables, Nauka, M., 1987 (in Russian) | MR
[14] A.W. Skorokhod, Random processes of independent increments, Nauka, M., 1964 | MR