Central limit theorem for weakly dependent random variables with values in $D\left[0,1\right]$
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 3, pp. 281-291.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main goal of this article is to prove the central limit theorem for sequences of random variables with values in the space $D\left [0,1\right]$. We assume that the sequence satisfies the mixing conditions. In the paper the central limit theorems for sequences with strong mixing and $\rho_{m}$-mixing are proved.
Keywords: central limit theorem, mixing sequence, $D\left[0,1\right]$ space.
@article{JSFU_2022_15_3_a2,
     author = {Olimjon Sh. Sharipov and Anvar F. Norjigitov},
     title = {Central limit theorem for weakly dependent random variables with values in $D\left[0,1\right]$},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {281--291},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a2/}
}
TY  - JOUR
AU  - Olimjon Sh. Sharipov
AU  - Anvar F. Norjigitov
TI  - Central limit theorem for weakly dependent random variables with values in $D\left[0,1\right]$
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2022
SP  - 281
EP  - 291
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a2/
LA  - en
ID  - JSFU_2022_15_3_a2
ER  - 
%0 Journal Article
%A Olimjon Sh. Sharipov
%A Anvar F. Norjigitov
%T Central limit theorem for weakly dependent random variables with values in $D\left[0,1\right]$
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 281-291
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a2/
%G en
%F JSFU_2022_15_3_a2
Olimjon Sh. Sharipov; Anvar F. Norjigitov. Central limit theorem for weakly dependent random variables with values in $D\left[0,1\right]$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 3, pp. 281-291. http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a2/

[1] P.H. Bezandry, X. Fernique, “Sur la propriete de la limite centrale dans $D\left[0,1\right]$”, Ann. Inst. H. Poincare, 28 (1992), 31–46 | MR | Zbl

[2] M. Bloznelis, V. Paulauskas, “On the central limit theorem in $D\left[0,1\right]$”, Stat. Prob. Lett., 17 (1993), 105–111 | DOI | MR | Zbl

[3] M. Bloznelis, V. Paulauskas, “A note on the central limit theorem for stochastically continuous processes”, Stochastic Processes and their Applications, 53 (1994), 351–361 | DOI | MR | Zbl

[4] D. Bosq, Linear processes in function spaces, Lecture Notes in Statistics, 149, Springer-Verlag, New York, 2000 | DOI | MR | Zbl

[5] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968 | MR | Zbl

[6] H. Dehling, O. Sh. Sharipov, M. Wendler, “Bootstrap for dependent Hilbert space-valued random variables with application to von Mises statistics”, Journal of Multivariate analysis, 133 (2015), 200–215 | DOI | MR | Zbl

[7] X. Fernique, “Les functions aleatoires càdlàg, la compacite de laurs lois”, Liet. Mat. Rink, 34 (1994), 288–306 | MR | Zbl

[8] M.G. Hahn, “Central limit theorems in $D\left[0,1\right]$”, Z. Wahrsch. Verw. Gebiete, 44 (1978), 89–101 | DOI | MR

[9] I.A. Ibragimov, “A Remark on the Central Limit Theorem for Dependent Random Variables”, Theor. Prob. Appl., 20 (1975), 134–140 | MR | Zbl

[10] D. Juknevičienė, “Central limit theorem in the space $D\left[0,1\right]$”, Lithuanian Math. J., 25 (1985), 293–298 | DOI

[11] A.F. Norjigitov, O. Sh.Sharipov, “The central limit theorem for weakly dependent random variables with values in the space $D\left[0,1\right]$”, Uzbek Math. J., 2 (2010), 103–112 (in Russian) | MR

[12] V. Paulauskas, Ch.Stieve, “On the central limit theorem in $D\left[0,1\right]$ and $D(\left[0,1\right],H)$”, Lithuanian Math. J., 30 (1990), 267–276 | DOI | MR | Zbl

[13] I.G. Zhurbenko, “On the conditions for mixing random processes with values in Hilbert spaces”, Dokl. AN USSR, 278:4 (1984), 792–796 | MR

[14] Q.M. Shao, “Maximal inequalities for partial sums of $\rho $-mixing sequences”, Ann. Prob., 23 (1995), 948–965 | DOI | MR | Zbl

[15] O. Sh.Sharipov, “On probabilistic characterization of Banach space by weakly dependent random elements”, Uzbek Math. J., 2 (1998), 86–91 (in Russian) | MR

[16] O. Sh.Sharipov, “A central limit theorem for weakly dependent random variables with values in co space”, Modern problems of Probability theory and Mathematical statistics, “FAN”, Tashkent, 2000, 193–197 (in Russian)

[17] O. Sh.Sharipov, A.F. Norjigitov, “Central limit theorem for weakly dependent random variables and autoregressive processes with values in $C\left[0,1\right]$”, Uzbek Math. J., 2 (2016), 149–157 (in Russian) | MR