Central limit theorem for weakly dependent random variables with values in $D\left[0,1\right]$
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 3, pp. 281-291

Voir la notice de l'article provenant de la source Math-Net.Ru

The main goal of this article is to prove the central limit theorem for sequences of random variables with values in the space $D\left [0,1\right]$. We assume that the sequence satisfies the mixing conditions. In the paper the central limit theorems for sequences with strong mixing and $\rho_{m}$-mixing are proved.
Keywords: central limit theorem, mixing sequence, $D\left[0,1\right]$ space.
@article{JSFU_2022_15_3_a2,
     author = {Olimjon Sh. Sharipov and Anvar F. Norjigitov},
     title = {Central limit theorem for weakly dependent random variables with values in $D\left[0,1\right]$},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {281--291},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a2/}
}
TY  - JOUR
AU  - Olimjon Sh. Sharipov
AU  - Anvar F. Norjigitov
TI  - Central limit theorem for weakly dependent random variables with values in $D\left[0,1\right]$
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2022
SP  - 281
EP  - 291
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a2/
LA  - en
ID  - JSFU_2022_15_3_a2
ER  - 
%0 Journal Article
%A Olimjon Sh. Sharipov
%A Anvar F. Norjigitov
%T Central limit theorem for weakly dependent random variables with values in $D\left[0,1\right]$
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 281-291
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a2/
%G en
%F JSFU_2022_15_3_a2
Olimjon Sh. Sharipov; Anvar F. Norjigitov. Central limit theorem for weakly dependent random variables with values in $D\left[0,1\right]$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 3, pp. 281-291. http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a2/