Central limit theorem for weakly dependent random variables with values in $D\left[0,1\right]$
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 3, pp. 281-291
Voir la notice de l'article provenant de la source Math-Net.Ru
The main goal of this article is to prove the central limit theorem for sequences of random variables with values in the space $D\left [0,1\right]$. We assume that the sequence satisfies the mixing conditions. In the paper the central limit theorems for sequences with strong mixing and $\rho_{m}$-mixing are proved.
Keywords:
central limit theorem, mixing sequence, $D\left[0,1\right]$ space.
@article{JSFU_2022_15_3_a2,
author = {Olimjon Sh. Sharipov and Anvar F. Norjigitov},
title = {Central limit theorem for weakly dependent random variables with values in $D\left[0,1\right]$},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {281--291},
publisher = {mathdoc},
volume = {15},
number = {3},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a2/}
}
TY - JOUR AU - Olimjon Sh. Sharipov AU - Anvar F. Norjigitov TI - Central limit theorem for weakly dependent random variables with values in $D\left[0,1\right]$ JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2022 SP - 281 EP - 291 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a2/ LA - en ID - JSFU_2022_15_3_a2 ER -
%0 Journal Article %A Olimjon Sh. Sharipov %A Anvar F. Norjigitov %T Central limit theorem for weakly dependent random variables with values in $D\left[0,1\right]$ %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2022 %P 281-291 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a2/ %G en %F JSFU_2022_15_3_a2
Olimjon Sh. Sharipov; Anvar F. Norjigitov. Central limit theorem for weakly dependent random variables with values in $D\left[0,1\right]$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 3, pp. 281-291. http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a2/