Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2022_15_3_a2, author = {Olimjon Sh. Sharipov and Anvar F. Norjigitov}, title = {Central limit theorem for weakly dependent random variables with values in $D\left[0,1\right]$}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {281--291}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a2/} }
TY - JOUR AU - Olimjon Sh. Sharipov AU - Anvar F. Norjigitov TI - Central limit theorem for weakly dependent random variables with values in $D\left[0,1\right]$ JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2022 SP - 281 EP - 291 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a2/ LA - en ID - JSFU_2022_15_3_a2 ER -
%0 Journal Article %A Olimjon Sh. Sharipov %A Anvar F. Norjigitov %T Central limit theorem for weakly dependent random variables with values in $D\left[0,1\right]$ %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2022 %P 281-291 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a2/ %G en %F JSFU_2022_15_3_a2
Olimjon Sh. Sharipov; Anvar F. Norjigitov. Central limit theorem for weakly dependent random variables with values in $D\left[0,1\right]$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 3, pp. 281-291. http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a2/
[1] P.H. Bezandry, X. Fernique, “Sur la propriete de la limite centrale dans $D\left[0,1\right]$”, Ann. Inst. H. Poincare, 28 (1992), 31–46 | MR | Zbl
[2] M. Bloznelis, V. Paulauskas, “On the central limit theorem in $D\left[0,1\right]$”, Stat. Prob. Lett., 17 (1993), 105–111 | DOI | MR | Zbl
[3] M. Bloznelis, V. Paulauskas, “A note on the central limit theorem for stochastically continuous processes”, Stochastic Processes and their Applications, 53 (1994), 351–361 | DOI | MR | Zbl
[4] D. Bosq, Linear processes in function spaces, Lecture Notes in Statistics, 149, Springer-Verlag, New York, 2000 | DOI | MR | Zbl
[5] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968 | MR | Zbl
[6] H. Dehling, O. Sh. Sharipov, M. Wendler, “Bootstrap for dependent Hilbert space-valued random variables with application to von Mises statistics”, Journal of Multivariate analysis, 133 (2015), 200–215 | DOI | MR | Zbl
[7] X. Fernique, “Les functions aleatoires càdlàg, la compacite de laurs lois”, Liet. Mat. Rink, 34 (1994), 288–306 | MR | Zbl
[8] M.G. Hahn, “Central limit theorems in $D\left[0,1\right]$”, Z. Wahrsch. Verw. Gebiete, 44 (1978), 89–101 | DOI | MR
[9] I.A. Ibragimov, “A Remark on the Central Limit Theorem for Dependent Random Variables”, Theor. Prob. Appl., 20 (1975), 134–140 | MR | Zbl
[10] D. Juknevičienė, “Central limit theorem in the space $D\left[0,1\right]$”, Lithuanian Math. J., 25 (1985), 293–298 | DOI
[11] A.F. Norjigitov, O. Sh.Sharipov, “The central limit theorem for weakly dependent random variables with values in the space $D\left[0,1\right]$”, Uzbek Math. J., 2 (2010), 103–112 (in Russian) | MR
[12] V. Paulauskas, Ch.Stieve, “On the central limit theorem in $D\left[0,1\right]$ and $D(\left[0,1\right],H)$”, Lithuanian Math. J., 30 (1990), 267–276 | DOI | MR | Zbl
[13] I.G. Zhurbenko, “On the conditions for mixing random processes with values in Hilbert spaces”, Dokl. AN USSR, 278:4 (1984), 792–796 | MR
[14] Q.M. Shao, “Maximal inequalities for partial sums of $\rho $-mixing sequences”, Ann. Prob., 23 (1995), 948–965 | DOI | MR | Zbl
[15] O. Sh.Sharipov, “On probabilistic characterization of Banach space by weakly dependent random elements”, Uzbek Math. J., 2 (1998), 86–91 (in Russian) | MR
[16] O. Sh.Sharipov, “A central limit theorem for weakly dependent random variables with values in co space”, Modern problems of Probability theory and Mathematical statistics, “FAN”, Tashkent, 2000, 193–197 (in Russian)
[17] O. Sh.Sharipov, A.F. Norjigitov, “Central limit theorem for weakly dependent random variables and autoregressive processes with values in $C\left[0,1\right]$”, Uzbek Math. J., 2 (2016), 149–157 (in Russian) | MR