Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2022_15_2_a6, author = {Dilshod S. Shodiev}, title = {On the {Cauchy} problem for the biharmonic equation}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {201--215}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a6/} }
TY - JOUR AU - Dilshod S. Shodiev TI - On the Cauchy problem for the biharmonic equation JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2022 SP - 201 EP - 215 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a6/ LA - en ID - JSFU_2022_15_2_a6 ER -
Dilshod S. Shodiev. On the Cauchy problem for the biharmonic equation. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 2, pp. 201-215. http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a6/
[1] L.A. Aizenberg, Carleman's formulas in complex analysis, Nauka, M., 1990 (in Russian) | MR
[2] T. Carleman, Les Funstions quasi analytiques, Paris, 1926
[3] G.M. Goluzin, V.I. Krylov, “Generalized Carleman's formula and its application to analytic continuation of functions”, Mat. sb., 40 (1933), 144–149 (in Russian)
[4] A.N. Tikhonov, “On the stability of inverse problems”, DAN SSSR, 39:5 (1943), 147–160 (in Russian) | MR
[5] A.N. Tikhonov, V. Ya.Arsenin, Methods for solving ill-posed problems, Nauka, M., 1995 (in Russian) | MR
[6] A.N. Tikhonov, A.A. Samarskiy, Equations of mathematical physics, Nauka, M., 1974 (in Russian) | MR
[7] M.M. Lavrent'ev, “On the Cauchy problem for the Laplace equation”, Izv. AN SSSR, 20:6 (1956), 819–842 (in Russian) | MR
[8] M.M. Lavrent'ev, On some ill-posed problems of mathematical physics, Ed. SO AN SSSR, Novosibirsk, 1962 (in Russian) | MR
[9] Sh.Yarmukhamedov, “On the harmonic continuation of differentiable functions given on a piece of the boundary”, Siberian Math. J., 43:1 (2002), 183–193 | DOI | MR | Zbl
[10] Sh.Yarmukhamedov, “Representation of a harmonic function in the form of potentials and the Cauchy problem”, Mathematical Notes, 83:5 (2008), 693–706 | DOI | MR | Zbl
[11] M. Ikehata, “Inverse conductivity problem in the infinite slab”, Inverse Problems, 17:3 (2001), 437–454 | DOI | MR | Zbl
[12] S.I. Kabanikhin, Inverse and ill-posed problems, Siberian Scientific Publishing House, Novosibirsk, 2009 (in Russian)
[13] L.A. Aizenberg, N.N. Tarkhanov, “Abstract Carleman formula”, Dokl. Math., 37:1 (1988), 235–238 | MR | Zbl
[14] A.M. Kytmanov, T.N. Nikitina, “Analogs of the Carleman formula for classical domains”, Mat. Notes, 45:3 (1989), 243–248 | DOI | MR | Zbl
[15] A.N. Polkovnikov, A.A. Shlapunov, “Construction of Carleman formulas by using mixed problems with parameter-dependent boundary conditions”, Siberian Mathematical Journal, 58:4 (2017), 676–686 | DOI | MR | Zbl
[16] V.V. Tikhomirov, N.N. Ochilov, “Regularization of the Cauchy problem for the Laplace equation”, Differential Equations, 50:8 (2014), 1128–1132 | DOI | MR | Zbl
[17] I.N. Vekua, New methods for solving elliptic equations, OGIZ State publishing house of technology-theoretical literature, M., 1948 (in Russian) | MR
[18] L. Marin, “Relaxation procedures for an iterative MFS algorithm for two-dimensional steady-state isotropic heat conduction Cauchy problems”, Eng. Anal. Bound. Elem., 35 (2011), 415–429 | DOI | MR | Zbl
[19] K.S. Fayazov, I.O. Khazhiev, “Estimation of conditional stability and approximate solution of a boundary value problem for a fourth-order partial differential equation”, Mathematical notes of NEFU, 22(85):1 (2015), 78–88 (in Russian) | MR | Zbl
[20] A.B Khasanov, F.R. Tursunov, “On the Cauchy problem for the Laplace equation”, Ufa Math. J., 11:4 (2019), 92–107 | DOI | MR | Zbl