On the Cauchy problem for the biharmonic equation
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 2, pp. 201-215.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to the study of continuation and stability estimation of the solution of the Cauchy problem for the biharmonic equation in the domain $G$ from its known values on the smooth part of the boundary $\partial G$. The problem under consideration belongs to the problems of mathematical physics in which there is no continuous dependence of solutions on the initial data. In this work, using the Carleman function, not only the biharmonic function itself, but also its derivatives are restored from the Cauchy data on a part of the boundary of the region. The stability estimates for the solution of the Cauchy problem in the classical sense are obtained.
Keywords: biharmonic equations, Cauchy problem, ill-posed problems, Carleman function, regularized solutions, regularization, continuation formulas.
@article{JSFU_2022_15_2_a6,
     author = {Dilshod S. Shodiev},
     title = {On the {Cauchy} problem for the biharmonic equation},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {201--215},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a6/}
}
TY  - JOUR
AU  - Dilshod S. Shodiev
TI  - On the Cauchy problem for the biharmonic equation
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2022
SP  - 201
EP  - 215
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a6/
LA  - en
ID  - JSFU_2022_15_2_a6
ER  - 
%0 Journal Article
%A Dilshod S. Shodiev
%T On the Cauchy problem for the biharmonic equation
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 201-215
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a6/
%G en
%F JSFU_2022_15_2_a6
Dilshod S. Shodiev. On the Cauchy problem for the biharmonic equation. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 2, pp. 201-215. http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a6/

[1] L.A. Aizenberg, Carleman's formulas in complex analysis, Nauka, M., 1990 (in Russian) | MR

[2] T. Carleman, Les Funstions quasi analytiques, Paris, 1926

[3] G.M. Goluzin, V.I. Krylov, “Generalized Carleman's formula and its application to analytic continuation of functions”, Mat. sb., 40 (1933), 144–149 (in Russian)

[4] A.N. Tikhonov, “On the stability of inverse problems”, DAN SSSR, 39:5 (1943), 147–160 (in Russian) | MR

[5] A.N. Tikhonov, V. Ya.Arsenin, Methods for solving ill-posed problems, Nauka, M., 1995 (in Russian) | MR

[6] A.N. Tikhonov, A.A. Samarskiy, Equations of mathematical physics, Nauka, M., 1974 (in Russian) | MR

[7] M.M. Lavrent'ev, “On the Cauchy problem for the Laplace equation”, Izv. AN SSSR, 20:6 (1956), 819–842 (in Russian) | MR

[8] M.M. Lavrent'ev, On some ill-posed problems of mathematical physics, Ed. SO AN SSSR, Novosibirsk, 1962 (in Russian) | MR

[9] Sh.Yarmukhamedov, “On the harmonic continuation of differentiable functions given on a piece of the boundary”, Siberian Math. J., 43:1 (2002), 183–193 | DOI | MR | Zbl

[10] Sh.Yarmukhamedov, “Representation of a harmonic function in the form of potentials and the Cauchy problem”, Mathematical Notes, 83:5 (2008), 693–706 | DOI | MR | Zbl

[11] M. Ikehata, “Inverse conductivity problem in the infinite slab”, Inverse Problems, 17:3 (2001), 437–454 | DOI | MR | Zbl

[12] S.I. Kabanikhin, Inverse and ill-posed problems, Siberian Scientific Publishing House, Novosibirsk, 2009 (in Russian)

[13] L.A. Aizenberg, N.N. Tarkhanov, “Abstract Carleman formula”, Dokl. Math., 37:1 (1988), 235–238 | MR | Zbl

[14] A.M. Kytmanov, T.N. Nikitina, “Analogs of the Carleman formula for classical domains”, Mat. Notes, 45:3 (1989), 243–248 | DOI | MR | Zbl

[15] A.N. Polkovnikov, A.A. Shlapunov, “Construction of Carleman formulas by using mixed problems with parameter-dependent boundary conditions”, Siberian Mathematical Journal, 58:4 (2017), 676–686 | DOI | MR | Zbl

[16] V.V. Tikhomirov, N.N. Ochilov, “Regularization of the Cauchy problem for the Laplace equation”, Differential Equations, 50:8 (2014), 1128–1132 | DOI | MR | Zbl

[17] I.N. Vekua, New methods for solving elliptic equations, OGIZ State publishing house of technology-theoretical literature, M., 1948 (in Russian) | MR

[18] L. Marin, “Relaxation procedures for an iterative MFS algorithm for two-dimensional steady-state isotropic heat conduction Cauchy problems”, Eng. Anal. Bound. Elem., 35 (2011), 415–429 | DOI | MR | Zbl

[19] K.S. Fayazov, I.O. Khazhiev, “Estimation of conditional stability and approximate solution of a boundary value problem for a fourth-order partial differential equation”, Mathematical notes of NEFU, 22(85):1 (2015), 78–88 (in Russian) | MR | Zbl

[20] A.B Khasanov, F.R. Tursunov, “On the Cauchy problem for the Laplace equation”, Ufa Math. J., 11:4 (2019), 92–107 | DOI | MR | Zbl