Morera's boundary theorem in Siegel domain of the first kind
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 2, pp. 255-262.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the realization of the matrix unit polydisk in the form of a Siegel domain of the first kind and proves the boundary analogue of Morera's theorem.
Keywords: matrix unit polydisk, holomorphic function, holomorphic extension.
Mots-clés : automorphism, Poisson kernel
@article{JSFU_2022_15_2_a11,
     author = {Bukharbay T. Kurbanov},
     title = {Morera's boundary theorem in {Siegel} domain of the first kind},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {255--262},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a11/}
}
TY  - JOUR
AU  - Bukharbay T. Kurbanov
TI  - Morera's boundary theorem in Siegel domain of the first kind
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2022
SP  - 255
EP  - 262
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a11/
LA  - en
ID  - JSFU_2022_15_2_a11
ER  - 
%0 Journal Article
%A Bukharbay T. Kurbanov
%T Morera's boundary theorem in Siegel domain of the first kind
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 255-262
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a11/
%G en
%F JSFU_2022_15_2_a11
Bukharbay T. Kurbanov. Morera's boundary theorem in Siegel domain of the first kind. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 2, pp. 255-262. http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a11/

[1] A.M. Kytmanov, S.G. Myslivets, “On a certain boundary analog of Morera's theorem”, Sib. Math. J., 36:6 (1995), 1171–1174 | DOI | MR | Zbl

[2] S. Kosbergenov, A.M. Kytmanov, S.G. Myslivets, “Morera's boundary theorem for classical domains”, Siberian Math. J., 40:3 (1999), 506–514 | DOI | MR | Zbl

[3] S.G. Myslivets, “On a boundary version of Morera's theorem”, Sib. Math. J., 42:5 (2001), 952–960 | DOI | MR | Zbl

[4] A.M. Kytmanov, S.G. Myslivets, Integral representations and their applications in multidimensional complex analysis, Siberian Federal University, Krasnoyarsk, 2010 (in Russian) | MR

[5] I.I. Pyatetsky–Shapiro, Geometry of classical domains and theory of automorphic functions, Nauka, M., 1961 (in Russian) | MR

[6] G. Khudayberganov, A.M. Kytmanov, B.A. Shaimkulov, Complex analysis in matrix domains, Siberian Federal University, Krasnoyarsk, 2011 (in Russian)

[7] G. Khudayberganov, B.T. Kurbanov, “On one realization of the classical domain of the first type”, Uzbek. Mat. Zh., 1 (2014), 126–129 | MR

[8] Hua Lo-ken, Harmonic analysis of functions of several complex variables in classical domains, IL, M., 1959 (in Russian) | MR | Zbl

[9] A. Koranyi, “The Poisson integral for the generalized half planes and bounded symmetric domains”, Ann. of Math., 82:2 (1965), 332–350 | DOI | MR | Zbl

[10] G. Khudayberganov, B.T. Kurbanov, “Morer's boundary theorem for the generalized upper half-plane”, Uzbek. Mat. Zh., 1 (2002), 78–83 (in Russian) | MR