A problem with wear involving thermo-electro-viscoelastic materials
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 2, pp. 241-254.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a mathematical model of a contact problem in thermo-electro-viscoelasticity. The body is in contact with an obstacle. The contact is frictional and bilateral with a moving rigid foundation which results in the wear of the contacting surface. We establish a variational formulation for the model and we prove the existence of a unique weak solution to the problem. The proof is based on a classical existence and uniqueness result on parabolic inequalities, differential equations and fixed point arguments. We present a variational formulation of the problem, and we prove the existence and uniqueness of the weak solution.
Keywords: piezoelectric, temperature, thermo-electro-viscoelastic, variational inequality, wear.
@article{JSFU_2022_15_2_a10,
     author = {Aziza Bachmar and Djamel Ouchenane},
     title = {A problem with wear involving thermo-electro-viscoelastic materials},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {241--254},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a10/}
}
TY  - JOUR
AU  - Aziza Bachmar
AU  - Djamel Ouchenane
TI  - A problem with wear involving thermo-electro-viscoelastic materials
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2022
SP  - 241
EP  - 254
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a10/
LA  - en
ID  - JSFU_2022_15_2_a10
ER  - 
%0 Journal Article
%A Aziza Bachmar
%A Djamel Ouchenane
%T A problem with wear involving thermo-electro-viscoelastic materials
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 241-254
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a10/
%G en
%F JSFU_2022_15_2_a10
Aziza Bachmar; Djamel Ouchenane. A problem with wear involving thermo-electro-viscoelastic materials. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 2, pp. 241-254. http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a10/

[1] L.E. Anderson, “Aquasistatic frictional problem with normal compliance”, Nonlinear Analysis: Theory, Methods, Applications, 16:4 (1991), 347–370 | DOI | MR

[2] R.C. Batra, J.S. Yang, “Saint–Venant's principle in linear piezoelectricity”, Journal of Elasticity, 38:2 (1995), 209–218 | DOI | MR | Zbl

[3] H. Benaissa, E.-H. Essou, R. Fakhar, “Existence results for unilateral contact problem with friction of thermo-electro-elasticity”, Applied Mathematics and Mechanics, 36:7 (2015), 911–926 | DOI | MR | Zbl

[4] M. Cocu, E. Pratt, M. Raous, “Formulation and approximation of quasistatic frictional contact”, International Journal of Engineering Science, 34:7 (1996), 783–798 | DOI | MR | Zbl

[5] G. Duvaut, J.L. Lions, Inequalities in Mechanics and Physics, Springer–Verlag, Berlin, 1988 | MR

[6] W. Han, M. Shillor, M. Sofonea, “Variational and nu- merical analysis of a quasistatic viscoelastic problem with normal compliance, friction and damage”, Journal of Computational and Applied Mathematics, 137:2 (2001), 377–398 | DOI | MR | Zbl

[7] F. Maceri, P. Bisegna, “The unilateral frictionless contact of a piezoelectric body with a rigid support”, Mathematical and Computer Modelling, 28:4-8 (1998), 19–28 | DOI | MR | Zbl

[8] R.D. Mindlin, “Elasticity, piezoelectricity and crystal lattice dynamics”, Journal of Elasticity, 2:4 (1972), 217–282 | DOI

[9] M. Rochdi, M. Shillor, M. Sofonea, “Aquasistaticcontact problem with directional friction and damped response”, Applicable Analysis, 68:3-4 (1998), 409–422 | DOI | MR | Zbl

[10] M. Selmani, L. Selmani, Frictional contact problem for elastic-viscoplastic materials with thermal effect, Berlin–Helberg, 2013 | MR | Zbl

[11] M. Sofonea, W. Han, M. Shillor, Analysis and Approximation of Contact Problems with Adhesion or Damage, Chapman Hall/CRC, New York, 2006 | MR | Zbl