Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2022_15_2_a1, author = {Mikhail V. Falaleev}, title = {Convolutional integro-differential equations in {Banach} spaces with a {Noetherian} operator in the main part}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {150--161}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a1/} }
TY - JOUR AU - Mikhail V. Falaleev TI - Convolutional integro-differential equations in Banach spaces with a Noetherian operator in the main part JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2022 SP - 150 EP - 161 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a1/ LA - en ID - JSFU_2022_15_2_a1 ER -
%0 Journal Article %A Mikhail V. Falaleev %T Convolutional integro-differential equations in Banach spaces with a Noetherian operator in the main part %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2022 %P 150-161 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a1/ %G en %F JSFU_2022_15_2_a1
Mikhail V. Falaleev. Convolutional integro-differential equations in Banach spaces with a Noetherian operator in the main part. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 2, pp. 150-161. http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a1/
[1] Veinberg M.M, Trenogin V.A., The Theory of Branching Solutions of Nonlinear Equations, Nauka Publ, M., 1969 (in Russian) | MR
[2] V.A. Trenogin, Functional Analysis, Physmathlit, M., 2002 (in Russian) | MR
[3] M.M. Cavalcanti, V.N. Domingos Cavalcanti, J. Ferreira, “Existence and Uniform Decay for a Non-Linear Viscoelastic Equation with Strong Damping”, Math. Meth. Appl. Sci., 24 (2001), 1043–1053 | DOI | MR | Zbl
[4] N.A. Sidorov, O.A. Romanova, “On application of some results of the branching theory in the process of solving differential equations with degeneracy”, Differential Equations, 19:9 (1983), 1516–1526 (in Russian) | MR | Zbl
[5] N.A. Sidorov, O.A. Romanova, E.B. Blagodatskaya, “Equations with partial derivatives and with the finite index operator in the main part”, Differential Equations, 30:4 (1994), 729–731 (in Russian) | Zbl
[6] M.V. Falaleev, E.Y. Grazhdantseva, “Fundamental operator functions of singular differential and differential-difference operators with the Noetherian operator in the main part in Banach spaces”, Siberian Mathematical Journal, 46:6 (2005), 1123–1134 | DOI | MR | Zbl
[7] M.Z. Nashed, Generalized Inverses and Applications, Academ. Press, New York, 1976 | MR | Zbl
[8] N.A. Sidorov, O.A. Romanova, E.B. Blagodatskaya, Equations with partial derivatives and with the finite index operator in the main part, Preprint 1992/3, Irkutsk Computing Center, Siberian Branch, Russian Academy of Sciences, Irkutsk, 1992 (in Russian) | MR
[9] V.S. Vladimirov, Generalized functions in Mathematical Physics, Nauka, M., 1979 (in Russian) | MR | Zbl
[10] V.S. Vladimirov, Equations of Mathematical Physics, Nauka, M., 1981 (in Russian) | MR