On a spectral problem for convection equations
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 1, pp. 88-100
Voir la notice de l'article provenant de la source Math-Net.Ru
Spectral problems for stationary unidirectional convective flows in vertical heat exchangers at various boundary temperature conditions are considered. The constant temperature gradient on the vertical walls is used as a spectral parameter. The heat exchanger cross-section can be of an arbitrary shape. The general properties of the spectral problem solutions are established. Solutions are obtained in an analytical form for rectangular and a circular cross sections. The critical values of temperature gradient at which convective flow arises are found. The corresponding vertical velocity profiles are constructed. The properties of solutions of a new transcendental equation for the spectral values are studied.
Keywords:
spectral problem, eigenfunctions, eigenvalues.
Mots-clés : convection
Mots-clés : convection
@article{JSFU_2022_15_1_a9,
author = {Victor K. Andreev and Alyona I. Uporova},
title = {On a spectral problem for convection equations},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {88--100},
publisher = {mathdoc},
volume = {15},
number = {1},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a9/}
}
TY - JOUR AU - Victor K. Andreev AU - Alyona I. Uporova TI - On a spectral problem for convection equations JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2022 SP - 88 EP - 100 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a9/ LA - en ID - JSFU_2022_15_1_a9 ER -
Victor K. Andreev; Alyona I. Uporova. On a spectral problem for convection equations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 1, pp. 88-100. http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a9/