On a spectral problem for convection equations
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 1, pp. 88-100 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Spectral problems for stationary unidirectional convective flows in vertical heat exchangers at various boundary temperature conditions are considered. The constant temperature gradient on the vertical walls is used as a spectral parameter. The heat exchanger cross-section can be of an arbitrary shape. The general properties of the spectral problem solutions are established. Solutions are obtained in an analytical form for rectangular and a circular cross sections. The critical values of temperature gradient at which convective flow arises are found. The corresponding vertical velocity profiles are constructed. The properties of solutions of a new transcendental equation for the spectral values are studied.
Keywords: spectral problem, eigenfunctions, eigenvalues.
Mots-clés : convection
@article{JSFU_2022_15_1_a9,
     author = {Victor K. Andreev and Alyona I. Uporova},
     title = {On a spectral problem for convection equations},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {88--100},
     year = {2022},
     volume = {15},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a9/}
}
TY  - JOUR
AU  - Victor K. Andreev
AU  - Alyona I. Uporova
TI  - On a spectral problem for convection equations
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2022
SP  - 88
EP  - 100
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a9/
LA  - en
ID  - JSFU_2022_15_1_a9
ER  - 
%0 Journal Article
%A Victor K. Andreev
%A Alyona I. Uporova
%T On a spectral problem for convection equations
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 88-100
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a9/
%G en
%F JSFU_2022_15_1_a9
Victor K. Andreev; Alyona I. Uporova. On a spectral problem for convection equations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 1, pp. 88-100. http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a9/

[1] V.K.Andreev, Y.A.Gaponenko, O.N.Goncharova, V.V.Pukhnachev, Mathematical Models of Convection, Walter de Gruyter GmbH $\$ Co, KG, Berlin–Boston, 2012 | MR

[2] V.V.Pukhnachev, “Symmetries in the Navier-Stokes equations”, Uspehi Mehaniki, 2006, no. 6, 3–76 (in Russian)

[3] S.N.Aristov, D.V.Knyazev, A.D.Polyanin, “Exact solutions of the Navier-Stokes equations with a linear dependence of the velocity components on two spatial variables”, Theoretical Foundations of Chemical Engineering, 43:5 (2009), 642–662 | DOI

[4] O.A.Ladyzhenskaya, Boundary value problems of mathematical physics, Fizmatlit, Nauka, 1973 (in Russian) | MR

[5] A.D.Polyanin, A Handbook of Linear Equations in Mathematical Physics, Fizmatlit, Nauka, 2001 (in Russian)

[6] V.G.Watson, The theory of Bessel functions, Publishing house of foreign literature, 1949 (in Russian)

[7] M.Abramovitz, I.Stegan, Special Functions Handbook, Fizmatlit, Nauka, 1979 (in Russian)

[8] I.S.Gradshtein, I.M.Ryzhik, Tables of integrals, sums, series and products, Fizmatlit, Nauka, 1963 (in Russian) | MR

[9] M.A.Lavrentyev, B.V.Shabat, Methods of Theory of Complex Variable Functions, Nauka, M., 1973 (in Russian) | MR