Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2022_15_1_a6, author = {Vladimir R. Kiyatkin and Anna V. Kosheleva}, title = {Satisfiability in a temporal multi-valueted logic based on $\mathbb{Z}$}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {56--74}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a6/} }
TY - JOUR AU - Vladimir R. Kiyatkin AU - Anna V. Kosheleva TI - Satisfiability in a temporal multi-valueted logic based on $\mathbb{Z}$ JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2022 SP - 56 EP - 74 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a6/ LA - en ID - JSFU_2022_15_1_a6 ER -
%0 Journal Article %A Vladimir R. Kiyatkin %A Anna V. Kosheleva %T Satisfiability in a temporal multi-valueted logic based on $\mathbb{Z}$ %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2022 %P 56-74 %V 15 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a6/ %G en %F JSFU_2022_15_1_a6
Vladimir R. Kiyatkin; Anna V. Kosheleva. Satisfiability in a temporal multi-valueted logic based on $\mathbb{Z}$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 1, pp. 56-74. http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a6/
[1] R. Aumann, A. Brandenburger, “Epistemic Conditions for Nash Equilibrium”, Econometrica, 63:5 (1995), 161–180 | DOI | MR
[2] F. Baader, “Ontology-Based Monitoring of Dynamic Systems”, Proceedings of the 14th International Conference on Principles of Knowledge Representation and Reasoning, KR'14, AAAI Press, Vienna, Austria, 2014, 678–681
[3] S.V. Babenyshev, V.V. Rybakov, “Logic of plausibility for discovery in multi-agent environment deciding algorithms”, Knowledge-based intelligent information and engineering systems, Lect. Notes Comput. Sci., 5179, Springer, Berlin-Heidelberg, 2008, 210–217 | DOI | MR
[4] M. Bacharach, P. Mongin, “Epistemic logic and the foundations of game theory”, Theory and Decision, 37:1 (1994), 1–6 | DOI | MR
[5] S.I. Bashmakov, A.V. Kosheleva, V.V. Rybakov, “Non-unifiability in linear temporal logic of knowledge with multi-agent relations”, Sib. Elektron. Mat. Izv., 13 (2016), 656–663 | MR | Zbl
[6] S.I. Bashmakov, A.V. Kosheleva, V.V. Rybakov, “Projective formulas and unification in linear discrete temporal multi-agent logics”, Sib. Elektron. Mat. Izv., 13 (2016), 923–929 | MR | Zbl
[7] J. van Benthem, Logic in games, MIT Press, Cambridge MA, 2012 | MR
[8] H. van Ditmarsch, J. Halpern, W. van der Hoek, B. Kooi, Handbook of Epistemic Logic, College Publications, London, 2015 | MR | Zbl
[9] R. Fagin, J. Halpern, Y. Moses, M. Vardi, Reasoning about knowledge, MIT Press, Cambridge, 1995 | MR | Zbl
[10] R. Fagin, J. Halpern, Y. Moses, M Vardi, “A nonstandard approach to the logical omniscience problem”, Artificial Intelligence, 79 (1995), 203–240 | DOI | MR | Zbl
[11] J. Hintikka, Knowledge and belief: an introduction to the logic of the two notions, Cornell University Press, 1962
[12] W. van der Hoek, M. Wooldridge, “Logics for Multi-Agent Systems”, Multi-Agent Systems, second edition, ed. G. Weiss, MIT Press, 2013, 671–810
[13] E. Pacuit, O. Roy, “Epistemic Foundations of Game Theory”, The Stanford Encyclopedia of Philosophy http://plato.stanford.edu/entries/epistemic-game/ | MR
[14] A. Perea, Epistemic Game Theory: Reasoning and Choice, Cambridge University Press, Cambridge, 2012 | MR
[15] A. Perea, “From Classical to Epistemic Game Theory”, International Game Theory Review, 16:1 (1440), 1440001 | DOI | MR
[16] N. Rescher, Epistemic Logic: A Survey Of the Logic Of Knowledge, University of Pittsburgh Press, 2005 | MR
[17] V.V. Rybakov, “Multiagent temporal logics with multivaluations”, Siberian Mathematical Journal, 59:4 (2018), 710–720 | DOI | MR | Zbl
[18] V.V. Rybakov, “Temporal multi-valued logic with lost worlds in the past”, Siberian Electronic Mathematical Reports, 15 (2018), 436–449 | DOI | MR | Zbl
[19] V.V. Rybakov, M.A. Moor, “Many-valuated multi-modal logics, satisfiability problem”, Siberian Electronic Mathematical Reports, 15 (2018), 829–838 | DOI | MR | Zbl
[20] V.V. Rybakov, “Multi-Agent Logics with Multi-Valuations and Intensional Logical Operations”, Lobachevskii Journal of Mathematics, 41 (2020), 243–251 | DOI | MR | Zbl
[21] Y. Shoham, K. Leyton-Brown, Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations, Cambridge University Press, New York, 2009 | Zbl
[22] M. Vardi, “An automata-theoretic approach to linear temporal logic”, Y. Banff Higher Order Workshop, 1995, 238–266
[23] M. Vardi, “Reasoning about the past with two-way automata”, International Colloquium on Automata, Languages, and Programming (ICALP), Lect. Notes Comput. Sci., 1443, Springer-Verl., Berlin, 1998, 628–641 | DOI | MR | Zbl